Skip to main content

Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology

  • Chapter
  • First Online:

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We present results on evolving geometrical and material properties of large strike-slip fault zones and associated deformation fields, using 3-D numerical simulations in a rheologically-layered model with a seismogenic upper crust governed by a continuum brittle damage framework over a viscoelastic substrate. The damage healing parameters we employ are constrained using results of test models and geophysical observations of healing along active faults. The model simulations exhibit several results that are likely to have general applicability. The fault zones form initially as complex segmented structures and evolve overall with continuing deformation toward contiguous, simpler structures. Along relatively-straight mature segments, the models produce flower structures with depth consisting of a broad damage zone in the top few kilometers of the crust and highly localized damage at depth. The flower structures form during an early evolutionary stage of the fault system (before a total offset of about 0.05 to 0.1 km has accumulated), and persist as continued deformation localizes further along narrow slip zones. The tectonic strain at seismogenic depths is concentrated along the highly damaged cores of the main fault zones, although at shallow depths a small portion of the strain is accommodated over a broader region. This broader domain corresponds to shallow damage (or compliant) zones which have been identified in several seismic and geodetic studies of active faults. The models produce releasing stepovers between fault zone segments that are locations of ongoing interseismic deformation. Material within the fault stepovers remains damaged during the entire earthquake cycle (with significantly reduced rigidity and shearwave velocity) to depths of 10 to 15 km. These persistent damage zones should be detectable by geophysical imaging studies and could have important implications for earthquake dynamics and seismic hazard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnon, A. and Lyakhovsky, V., Damage distribution and localization during dyke intrusion. In (G. Baer and A. Heimann, eds), The Physics and Chemistry of Dyke Rotterdam, Balkema, 1995) pp. 65–78.

    Google Scholar 

  • Ambraseys, N. N. (1970), Some characteristic features of the North Anatolian fault zone, Tectonophysics 9, 143–165.

    Article  Google Scholar 

  • Ampuero, J.-P. and Ben-Zion, Y. (2008), Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int. 173, 674–692, doi: 10.1111/j.1365-246X. 2008.03736.x.

    Article  Google Scholar 

  • Andrews, D. J. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res. 110, B01307, doi: 10.1029/2004JB003191.

    Article  Google Scholar 

  • Aydin, A. and Johnson, A.M. (1983), Analysis of faulting in porous sandstones, J. Struct. Geol. 5, 19–31.

    Article  Google Scholar 

  • Armijo, R., Meyer, B., King, G. C. P., Rigo, A., and Papanastassiou, D. (1996), Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophys. J. Int. 126, 11–53.

    Article  Google Scholar 

  • Baisch, S., and Bokelmann, G. H. R. (2001), Seismic waveform attributes before and after the Loma Prieta earthquake: Scattering change near the earthquake and temporal recovery, J. Geophys. Res. 106, 16,323–16,337.

    Article  Google Scholar 

  • Ben-Zion, Y. (1996), Stress, slip and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations, J. Geophys. Res. 101, 5677–5706.

    Article  Google Scholar 

  • Ben-Zion, Y. and Aki, K. (1990), Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. Seismol Soc. Am. 80, 971–994.

    Google Scholar 

  • Ben-Zion, Y. and Andrews, D. J. (1998), Properties and implications of dynamic rupture along a material interface, Bull. Seismol. Soc. Am. 88(4), 1085–1094.

    Google Scholar 

  • Ben-Zion, Y., Henyey, T., Leary, P. and Lund, S. (1990), Observations and implications of water well and creepmeter anomalies in the Mojave segment of the San Andreas fault zone, Bull. Seismol. Soc. Am. 80, 1661–1676.

    Google Scholar 

  • Ben-Zion, Y. and Lyakhovsky, V. (2006), Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology, Geophys. J. Int. 165, 197–210.

    Article  Google Scholar 

  • Ben-Zion, Y., Peng, Z., Okaya, D., Seeber, L., Armbruster, J. G., Ozer, N., Michael, A. J., Baris, S. and Aktar, M. (2003), A shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int. 152, 699–717.

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C. (2003), Characterization of Fault Zones, Pure Appl. Geophys. 160, 677–715.

    Article  Google Scholar 

  • Ben-Zion, Y. and Shi, Z. (2005), Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett. 236, 486–496, doi: 10.1016/j.epsl.2005.03.025.

    Article  Google Scholar 

  • Bercovici, D. and Ricard, Y. (2003), Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation, Geophys. J. Int. 152 (3), 581–596 doi: 10.1046/j.1365-246X.2003.01854.x

    Article  Google Scholar 

  • Budiansky, B. and O’Connell, R. J. (1976), Elastic moduli of a cracked solid, Int. J. Sol. Struct. 12, 81–97.

    Article  Google Scholar 

  • Carter, N. L. and Tsenn, M. C. (1987), Flow properties of continental lithosphere, Tectonophysics 136, 27–63.

    Article  Google Scholar 

  • Chester, F. M. and Chester, J. S. (1998), Ultracataclasite structure and friction processes of the Punchbowl Fault, San Andreas System, California, Tectonophysics 295, 199–221.

    Article  Google Scholar 

  • Chester, F. M. (1995), Geologic studies of deeply exhumed faults of the San Andreas System, Southern California: Collaborative research with Saint Louis University and Utah State University: NEHRP annual project summary, award No. 94G2457, v. 37.

    Google Scholar 

  • Chester, F. M., Evans, J. P., and Biegel, R. L. (1993), Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res. 98, 771–786.

    Article  Google Scholar 

  • Christensen, N. I., and Mooney, W. D. (1995), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res. 100 (B6): 9761–9788.

    Article  Google Scholar 

  • Cochran, E. S., Vidale, J. E., and Li, Y. G. (2003), Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res. 108(B9), 2436, doi: 10.1029/2002JB002352.

    Article  Google Scholar 

  • Cowie, P. A., Vanneste, C., and Sornette, D. (1993), Statistical Physics Model for the Spatiotemporal Evolution of Faults, J. Geophys. Res. 98(B12), 21,809–21,821.

    Article  Google Scholar 

  • Cundall, P. A. and Board, M. A microcomputer program for modeling large-strain plasticity problems. In Numerical Methods in Geomechanics, Proc. 6th Int. Conf. Numerical Methods in Geomechanics, Innsbruck, (ed. Swoboda ), (C., Rotterdam, Balkema, 1988) pp. 2101–2108.

    Google Scholar 

  • De Paola, N., Holdsworth, R. E., Collettini, C., McCaffrey, K. J. W., and Barchi, M. R. (2007), The structural evolution of dilational step-overs in regional transtensional zones. (Cunningham W. D. and Mann, P., eds), Tectonics of Strike-Slip Restraining and Releasing Bends (Geolog. Soc., London. Special Publications), 290, pp. 433–445.

    Google Scholar 

  • Dieterich, J. H. (1972), Time-dependent friction in rocks, J. Geophys. Res. 77, 3690–3697.

    Article  Google Scholar 

  • Dieterich, J. H. (1978), Time-dependent friction and the mechanics of stick-slip, Pure Appl. Geophys. 116, 790–805.

    Article  Google Scholar 

  • Dieterich, J. H. (1979), Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res. 84, 2161–2168.

    Article  Google Scholar 

  • Dolan, J. F., Bowman, D. D., and Sammis, C. G. (2007), Long-range and long-term fault interactions in Southern California, Geology, 35, 855–858.

    Article  Google Scholar 

  • Dor, O., Rockwell, T. K. and Ben-Zion, Y. (2006), Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl Faults in Southern California: A possible indicator for preferred rupture propagation direction, Pure Appl. Geophys. 163, 301–349, doi: 10.1007/s00024-005-0023-9.

    Article  Google Scholar 

  • Dor, O., Yildirim, C., Rockwell, T.K., Ben-Zion, Y., Emre, O., Sisk, M., Duman, T. Y. (2008), Geologic and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault: Possible signals for preferred earthquake propagation direction, Geophys. J. Int., doi: 10.1111/j.1365-246X.2008.03709.x.

    Google Scholar 

  • Dunham, E. M. and Rice, J. R. (2008), Earthquake slip betweenn dissimilar poroelastic materials, J. Geophys. Res., in press.

    Google Scholar 

  • Eissa, E. A. and Kazi, A. (1988), Relation between static and dynamic Young’s Moduli of Rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(6), 479–482.

    Article  Google Scholar 

  • Evans, J. P., Shipton, Z. K., Pachell, M. A., Lim, S. J., and Robeson, K. The structure and composition of exhumed faults, and their implication for seismic processes. In Proc. of the 3rd Confer. on Tecto. problems of the San Andreas system, (Stanford University 2000).

    Google Scholar 

  • Fialko, Y. (2004), Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 M w 7.3 Landers (southern California) earthquake, J. Geophys Res. 109, B03307, doi: 10.1029/2003JB002756.

    Article  Google Scholar 

  • Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., and Minster, B. (2002), Deformation on nearby faults induced by the 1999 Hector Mine earthquake, Science 297, 1858–1862.

    Article  Google Scholar 

  • Finzi, Y., Hearn, E. H., Lyakhovsky, V., and Ben-Zion, Y. (2006), 3-D viscoelastic damage rheology models of strike-slip fault systems and their associated surface deformation, EOS Trans. AGU, 87(52), Fall Meet. Suppl., Abstract T21C-0425.

    Google Scholar 

  • Graymer, R. W., Langenheim, V.E., Simpson, R.W., Jachens, R.C., and Ponce, D.A. (2007), Relatively simple through-going fault planes at large-earthquake depth may be concealed by the surface complexity of strike-slip faults. In (Cunningham, W.D., and Mann, Paul, eds.) Tectonics of Strike-Slip Restraining and Releasing Bends, (Geological Society of London Special Publication 2007), vol. 290, pp. 189–201, doi: 10.1144/SO290.5 0305-8719/07.

    Google Scholar 

  • Hamiel, Y., Lyakhovsky, V., and Agnon, A. (2005), Rock dilation, nonlinear deformation, and pore pressure change under shear, Earth Planet. Sci. Lett. 237, 577–589

    Article  Google Scholar 

  • Hamiel, Y., Katz, O., Lyakhovsky., Reches, Z. and Fialko, Y. (2006), Stable and unstable damage evolution in rocks with implications to fracturing of granite, Geophys. J. Int. 167, 1005–1016.

    Article  Google Scholar 

  • Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., and Lockner, D. (2004), A visco-elastic damage model with applications to stable and unstable fracturing, Geophys. J. Int. 159, 1155–1165.

    Article  Google Scholar 

  • Hamiel, Y. and Fialko, Y. (2007), Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake, J. Geophys. Res. 112, B07412, doi: 10.1029/2006JB004777.

    Article  Google Scholar 

  • Harris, R. A. and Day, S. M. (1999), Dynamic 3-D simulations of earthquakes on en echelon faults, Geophys. Res. Lett. 26, 2089–2092.

    Article  Google Scholar 

  • Harris, R. A. and Day, S. M. (1993), Dynamics of fault interaction: Parallel strike-slip faults, J. Geophys. Res. 98, 4461–4472.

    Article  Google Scholar 

  • Harris, R. A., Archuleta, R. J., and Day, S. M. (1991), Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture, Geophys. Res. Lett. 18, 893–896.

    Article  Google Scholar 

  • Hearn, E. H. and Fialko, Y. (2009), Coseismic deformation of Mojave compliant zones and crustal stresses, J. Geophys. Res., in press.

    Google Scholar 

  • Hickman, S., Sibson, R.H., and Bruhn, R. (1995), Introduction to a special section, mechanical involvement of fluids in faulting, J. Geophys. Res. 100, 12,831–12,840.

    Article  Google Scholar 

  • Ide, J. M. (1936), Comparison of statically and dynamically determined Young’s modulus of rocks, Proc. Nat. Acad. Sci., U.S.A. 22, 81–92.

    Article  Google Scholar 

  • Karabulut, H. and Bouchon, M. (2007), Spatial variability and non-linearity of strong ground motion near a fault, Geoph. J. Int. 170, 1, 262–274.

    Article  Google Scholar 

  • Kim, Y.S., Peacock, D.C.P. and Sanderson, D.J. (2004), Fault damage zones, J. Struct. Geology 26, 503–517.

    Article  Google Scholar 

  • King, G. (1986), Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure, Pure Appl. Geophys., 124, 567–585.

    Article  Google Scholar 

  • Kirby, S. H. and Kronenberg, A. K. (1987), Rheology of the lithosphere: Selected topics, Rev. Geophys. 25, 1219–1244.

    Article  Google Scholar 

  • Korneev, V.A., Nadeau, R.M. and McEvilly, T.V. (2003), Seismological studies at Parkfield IX: Fault-one imaging using guided wave attenuation, Bull. Seismol. Soc. Am. 93, 1415–1426.

    Article  Google Scholar 

  • Lewis, M. A., Peng, Z., Ben-Zion, Y., and Vernon, F. (2005), Shallow seismic trapping structure in the San Jacinto fault zone, Geophys. J. Int. 162, 867–881, doi:10.1111/j.1365-246X.2005.02684.x.

    Article  Google Scholar 

  • Li, Y. G., Leary, P., Aki, K., and Malin, P. (1990), Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763–766.

    Article  Google Scholar 

  • Li, Y.-G., Aki, K., Adams, D., Hasemi, A., and Lee, W. H. K. (1994), Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992, J. Geophys. Res. 99(B6), 11,705–11,722.

    Article  Google Scholar 

  • Li, Y.-G., Chen, P., Cochran, E. S., Vidale, J. E., and Burdette, T. (2006), Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield Earthquake Bull. Seismol. Soc. Am., 96, 4B, S349–S363.

    Article  Google Scholar 

  • Li, Y., Teng T. L., and Ben-Zion, Y. (2004), Systematic analysis of shear-wave splitting in the aftershock region of the 1999 Chi-Chi earthquake: Evidence for shallow anisotropic structure and lack of systematic temporal variations, Bull. Seismol. Soc. Am. 94, 2330–2347.

    Article  Google Scholar 

  • Lyakhovsky, V. and Myasnikov, V. P. (1984), On the behavior of elastic cracked solid, Phys. Solid Earth 10, 71–75.

    Google Scholar 

  • Lyakhovsky, V. and Myasnikov, V. P. (1985), On the behavior of visco-elastic cracked solid, Phys. Solid Earth 4, 28–35.

    Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1997a), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27,635–27,649.

    Article  Google Scholar 

  • Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T.E. (1997b), Non-linear elastic behavior of damaged rocks, Geophys. J. Int. 130, 157–166.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2001), Earthquake cycle, faults, and seismicity patterns in rheologically layered lithosphere, J. Geophys. Res. 106, 4103–4120.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2005), A viscoelastic damage rheology and rate-and state-dependent friction, Geophys. J. Int. 161, 179–190.

    Article  Google Scholar 

  • Lyakhovsky, V. and Ben-Zion, Y. (2008), Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Int. 172, 651–662, doi:10.1111/j.1365-246X.2007.03652.x.

    Article  Google Scholar 

  • Lyakhovsky, V., and Ben-Zion, Y. (2009), Evolving fault zone structures in a damage rheology model, Geochemistry, Geophysics, Geosystems, in review.

    Google Scholar 

  • Malvern, L.E. Introduction to the Mechanics of a Continuum Medium (New Jersey, Prentice-Hall, Inc., 1969), 713 pp.

    Google Scholar 

  • McGuire, J. and Ben-Zion, Y. (2005), High-resolution imaging of the Bear Valley section of the San Andreas Fault at seismogenic depths with fault-zone head waves and relocated seismicity, Geophys. J. Int. 163, 152–164; doi: 10.1111/j.1365-246X.2005.02703.x.

    Article  Google Scholar 

  • Micklethwaite, S. and Cox, S. F. (2004), Fault-segment rupture, aftershock-zone fluid flow and mineralization, Geology 32, 813–816.

    Article  Google Scholar 

  • Mooney, W. D. and Ginzburg, A. (1986), Seismic measurements of the internal properties of fault zones, Pure Appl. Geophys. 124, 141–157.

    Article  Google Scholar 

  • Nadeau, R., Antolik, M., Johnson, P., Foxall, W., and McEvilly, T. V. (1994), Seismological studies at Parkfield III: Microearthquake clusters in the study of fault-zone dynamics. Bull. Seismol. Soc. Am. 83, 247–263.

    Google Scholar 

  • Oglesby, D. D., Day, S. M., Li, Y.-G., and Vidale, J. E. (2003), The 1999 Hector Mine Earthquake: The dynamics of a branched fault system, Bull. Seismol. Soc. Am. 93, 6, 2459–2476.

    Article  Google Scholar 

  • Olson, J., and Pollard, D. D. (1989), Inferring paleostresses from natural fracture patterns: A new method, Geology 17, 4, 345–348.

    Article  Google Scholar 

  • Peng, Z. and Ben-Zion, Y. (2004), Systematic analysis of crystal anisotropy along the Karadere-Duzce branch of the north Anatolian fault, Geophys. J. Int. 159, 253–274, doi:10.1111/j.1365-46X.2004.02379.x.

    Article  Google Scholar 

  • Peng, Z. and Ben-Zion, Y. (2005), Spatio-temporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 İzmit and M7.1 Düzce, Turkey, earthquake sequences, Geophys. J. Int. 160(3), 1027–1043, doi: 10.1111/j.1365-246X.2005.02569.x.

    Article  Google Scholar 

  • Peng, Z. and Ben-Zion, Y. (2006), Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion, Pure Appl. Geophys. 163, 567–600, doi: 10.1007/s00024-005-0034-6.

    Article  Google Scholar 

  • Peng, Z., Ben-Zion, Y., Michael, A. J., and Zhu, L. (2003), Quantitative analysis of seismic trapped waves in the rupture zone of the 1992 Landers, California earthquake: Evidence for a shallow trapping structure, Geophys. J. Int. 155, 1021–1041.

    Article  Google Scholar 

  • Poliakov, A., Cundall, P., Podladchikov, Y., and Lyakhovsky, V. An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two-and three-layers model. In Proc. NATO Advanced Study Institute on Dynamic Modeling and Flow in the Earth and Planets, (Runcorn, K.E. and Stone, D., eds) (Dordrecht, Kluwer, 1993) pp. 175–195.

    Google Scholar 

  • Poupinet, G., Ellsworth, W. L., and Frechet, J. (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res. 89(B7), 5719–5731.

    Article  Google Scholar 

  • Powell, R. E. and Weldon, R. J. (1992), Evolution of the San Andreas Fault, Annu. Rev. Earth Planet Sci. 20, 431–468.

    Article  Google Scholar 

  • Revenaugh, J. (2000), The relation of crustal scattering to seismicity in southern California, J. Geophys. Res. 105(B11), 25,403–25,422.

    Article  Google Scholar 

  • Rice, J.R. and Ben-Zion, Y. (1996), Slip complexity in earthquake fault models, Proc. Natl. Acad. Sci. U.S.A. 93, 3811–1818.

    Article  Google Scholar 

  • Rockwell, T. K. and Ben-Zion, Y. (2007), High localization of primary slip zones in large earthquakes from paleoseismic trenches: Observations and implications for earthquake physics, J. Geophys. Res. 112, B10304, doi:10.1029/2006JB004764.

    Article  Google Scholar 

  • Rubinstein, J.L. and Beroza, G.C. (2004), Evidence for widespread strong ground motion in the M w 6.9 Loma Prieta eartquake, Bull. Seismol. Soc. Am. 94, 1595–1608.

    Article  Google Scholar 

  • Rudnicki, J. W. and Rice, J. R. (2006), Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials, J. Geophys. Res. 111, B10308, doi:10.1029/2006JB004396.

    Article  Google Scholar 

  • Saucier, F. and Humphreys, E.D. (1993), Horizontal crustal deformation in Southern California from joint models of geologic and very long baseline interferometry measurements. In Contributions of Space Geodesy to Geodynamics (D.E. Smith and D.L. Turcotte, eds.), pp. 139–176, (AGU Geodyn. Ser. Vol. 23, Washington D.C. 1993).

    Google Scholar 

  • Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., and Ellsworth, W. L. (2002), High-resolution image of Calaveras Fault seismicity, J. Geophys. Res. 107(B9), 2186, doi:10.1029/2001JB000633.

    Article  Google Scholar 

  • Schaff, D. P. and Beroza, G. C. (2004), Coseismic and postseismic velocity changes measured by repeating earthquakes, J. Geophys. Res. 109, B10302, doi:10.1029/2004JB003011.

    Article  Google Scholar 

  • Schulz, S. E. and Evans, J. P. (2000), Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. of Struct. Geol. 22, 913–930.

    Article  Google Scholar 

  • Segall, P. and Pollard, D. D. (1980), Mechanics of discontinuous faults, J. Geophys. Res. 85, 4337–4350, 1980.

    Article  Google Scholar 

  • Sengor, A. M. C., Tuysz, O., Imren, C., Sakinc, M., Eyidogan, H., Gorur, N., Le Pichon, X., and Rangin, C. (2005), The North Anatolian Fault: A new look, Annu. Rev. Earth Planet. Sci. 33, 37–112.

    Article  Google Scholar 

  • Sheldon, H. A., and Micklethwaite, S. (2007), Damage and permeability around faults: Implications for mineralization, Geology 35, 10, 903–906.

    Article  Google Scholar 

  • Shipton, Z. K., and Cowie, P. A. (2003), A conceptual model for the origin of fault damage zone structures in high-porosity sandstone, J. Struct. Geol. 25, 3, 333–344

    Article  Google Scholar 

  • Sibson, R.H. (1985), Stopping of earthquake ruptures at dilational fault jogs, Nature 316, 248–251.

    Article  Google Scholar 

  • Sibson, R. H. (2003), Thickness of the seismic slip zone, Bull. Seismol. Soc. Am. 93, 3, 1169–1178.

    Article  Google Scholar 

  • Stirling, M. W., Wesnousky, S. G., and Shimazaki, K. (1996), Fault trace complexity, cumulative slip, and the shape of the magnetude-frequency distribution for strikeslip faults: a global survey, Geophys. J. Int. 124, 833–868.

    Article  Google Scholar 

  • Stierman, D. J. (1984), Geophysical and geological evidence for fracturing, water circulation and chemical alteration in granitic rocks adjacant to major strike-slip faults, J. Geophys. Res. 89, B7, 5849–5857.

    Article  Google Scholar 

  • Sylvester, A. G. (1988), Strike-slip faults, Geol. Soc. Am. 100, 1666–1703.

    Article  Google Scholar 

  • Sylvester, A. G. and Smith, R., (1976), Tectonic transpretions and basement controlled deformation in the San Andreas fault zone, Salton trough, California, AAPG Bull. 60, 2081–2102.

    Google Scholar 

  • Tchalenko, J. S. (1970), Similarities between shear zones of different magnitudes, Geolog. Soc. Am. Bull. 81, 1625–1640.

    Article  Google Scholar 

  • Templeton, E. L. and Rice, J. R. (2008), Off-fault plasticity and earthquake rupture dynamics, 1. Dry materials or neglect of fluid pressure changes, J. Geophys. Res.

    Google Scholar 

  • Tenthorey, E., Cox, S. F., and Todd, H. F. (2003), Evolution of strength recovery and permeability during fluidrock reaction in experimental fault zones, Earth Planet. Sci. Lett. 206(1–2), 161–172.

    Article  Google Scholar 

  • Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., and Eberhart-Phillips, D. (2006), Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, Region, Bull. Seismol. Soc. of Am. 96, 4B, S38–S49, doi: 10.1785/0120050825.

    Article  Google Scholar 

  • Turcotte, D. L. and Glasscoe, M.T. (2004), A damage model for the continuum rheology of the upper continental crust, Tectonophysics 383, 71–80.

    Article  Google Scholar 

  • Wesnousky, S. G. (2006), Predicting the endpoints of earthquake ruptures, Nature 444, 358–360.

    Article  Google Scholar 

  • Wesnousky, S. (1994), The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am. 84, 1940–1959.

    Google Scholar 

  • Wilcox, R. E., Harding, T. P., and Seely, D. R. (1973), Basic wrench tectonics, AAPG Bull. 57, 74–96.

    Google Scholar 

  • Wu, C., Peng, Z. and Ben-Zion, Y. (2009), Non-linearity and temporal changes of fault zone site response associated with strong ground motion, Geophys. J. Int. 176, 265–278, doi: 10.111/j.1365-246x.2008.04005.x.

    Article  Google Scholar 

  • Yamashita, T. (2007), Postseismic quasi-static fault slip due to pore pressure change on a bimaterial interface, J. Geophys. Res. 112, B05304, doi:10.1029/2006JB004667.

    Article  Google Scholar 

  • Yang, W. and Ben-Zion, Y. (2009), Observational analysis of correlations between aftershock prodectivities and regional conditions in the context of a damage rheology model, Geophys. J. Int., 177, 481–499 doi: 10.1111/j.1365-246x.2009.0414s.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Finzi, Y., Hearn, E.H., Ben-Zion, Y., Lyakhovsky, V. (2009). Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. In: Ben-Zion, Y., Sammis, C. (eds) Mechanics, Structure and Evolution of Fault Zones. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_2

Download citation

Publish with us

Policies and ethics