Skip to main content

Characterization of Fault Roughness at Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements

  • Chapter
  • First Online:
Mechanics, Structure and Evolution of Fault Zones

Abstract

Accurate description of the topography of active fault surfaces represents an important geophysical issue because this topography is strongly related to the stress distribution along fault planes, and therefore to processes implicated in earthquake nucleation, propagation, and arrest. To date, due to technical limitations, studies of natural fault roughness either performed using laboratory of field profilometers, were obtained mainly from 1-D profiles. With the recent development of Light Detection And Ranging (LIDAR) apparatus, it is now possible to measure accurately the 3-D topography of rough surfaces with a comparable resolution in all directions, both at field and laboratory scales. In the present study, we have investigated the scaling properties including possible anisotropy properties of several outcrops of two natural fault surfaces (Vuache strike-slip fault, France, and Magnola normal fault, Italy) in limestones. At the field scale, digital elevation models of the fault roughness were obtained over surfaces of 0.25 m2 to 600 m2 with a height resolution ranging from 0.5 mm to 20 mm. At the laboratory scale, the 3-D geometry was measured on two slip planes, using a laser profilometer with a spatial resolution of 20 μm and a height resolution less than 1 μm.

Several signal processing tools exist for analyzing the statistical properties of rough surfaces with self-affine properties. Among them we used six signal processing techniques: (i) the root-mean-squares correlation (RMS), (ii) the maximum-minimum height difference (MM), (iii) the correlation function (COR), (iv) the RMS correlation function (RMS-COR), (v) the Fourier power spectrum (FPS), and (vi) the wavelet power spectrum (WPS). To investigate quantitatively the reliability and accuracy of the different statistical methods, synthetic self-affine surfaces were generated with azimuthal variation of the scaling exponent, similar to that which is observed for natural fault surfaces. The accuracy of the signal processing techniques is assessed in terms of the difference between the “input” self-affine exponent used for the synthetic construction and the “output” exponent recovered by those different methods. Two kinds of biases have been identified: Artifacts inherent to data acquisition and intrinsic errors of the methods themselves. In the latter case, the statistical results of our parametric study provide a quantitative estimate of the dependence of the accuracy with system size and directional morphological anisotropy. Finally, based on this parametric study, we used the most reliable techniques (RMS-COR, FPS, WPS) to analyze field data. These three methods provide complementary results. The EPS and WPS methods determine a robust characterization of the fault surface roughness in the direction of striations and perpendicular to them. The RMS-COR method allows investigation of the azimuth dependence of the scaling exponent. For both field and laboratory data, the topography perpendicular to the slip direction displays a similar scaling exponent H =0.8. However, our analysis indicates that for the Magnola fault surface the scaling roughness exponent parallel to the mechanical striation is identical at large and small scales H / /=0.6–0.7, whereas for the Vuache fault surface it is characterized by two different self-affine regimes at small and large scales. We interpret this cross-over length scale as a witness of different mechanical processes responsible for the creation of fault topography at different spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amitrano, D. and Schmittbuhl, J. (2002), Fracture roughness and gouge distribution of a granite shear band, J. Geophys. Res. 107(B12), 2375, doi: 10.1029/2002JB001761.

    Article  Google Scholar 

  • Aki, K. (1984), Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res. 89, 5867–5872.

    Article  Google Scholar 

  • Barabasi, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge University Press. 1995).

    Google Scholar 

  • Bierme, H., Meeschaert, M. M., and Scheffler, H.-P. (2007), Operator scaling stable random fields, Stoch. Proc. Appl. 117, 312–332.

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C.G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 677–715, doi: 10.1007/PL00012554.

    Article  Google Scholar 

  • Bouchaud, E. (1997), Scaling properties of cracks, J. Phys. Condens. Matter 9, 4319–4344.

    Article  Google Scholar 

  • Brown, S. R. and Scholz, C. H. (1985), Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res. 90, 2575–2582.

    Google Scholar 

  • Campillo, M., Favreau, P., Ionescu, I. R., and Voisin, C. (2001), On the effective friction law of an heterogeneous fault, J. Geophys. Res. 106, 307–322.

    Article  Google Scholar 

  • Carcaillet, J., Manighetti, I., Chauvel, C., Schlagenhauf, A., and Nicole, J. M. (2008), Identifying past earthquakes on an active normal fault (Magnola, Italy) from the chemical analysis of its exhumed carbonate fault plane, Earth Planet. Sci. Lett. 271, 145–158, doi: 10.1016/j.epsl.2008.03.059.

    Article  Google Scholar 

  • Chen, G. and Spetzler, H. A. (1993), Topographic characteristics of laboratory-induced shear fractures, Pure Appl. Geophys. 140, 123–135.

    Article  Google Scholar 

  • Clausel, M. and Vedel, B. (2008), Explicit constructions of operator scaling stable random Gaussian fields, preprint to Adv. Appl. Prob.

    Google Scholar 

  • Goscombe, B. D., Passchier, C., and Handa, M. (2004), Boudinage classification: end-member Boudin types and modified boudin structures, J. Struct. Geol. 26, 739–763.

    Article  Google Scholar 

  • Johnson, A. M. and Fletcher, R. C., Folding of Viscous Layers: Mechanical Analysis and Interpretation of Structures in Deformed Rock (Columbia University Press. 1994).

    Google Scholar 

  • Lay, T., Kanamori, H., and Ruff. (1982), The asperity model and the nature of large subduction zone earthquakes, Earth. Predict. Res. 1, 3–71.

    Google Scholar 

  • Lee, J.-J. and Bruhn, R. (1996), Structural anisotropy of normal fault surfaces, J. Struct. Geol. 18, 1043–1059.

    Article  Google Scholar 

  • Libicki, E. and Ben-Zion, Y. (2005), Stochastic Branching Models of Fault Surfaces and Estimated Fractal Dimensions, Pure Appl. Geophys. 162, 1077–1111, doi: 10.1007/s00024-004-2662-7.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1985), Self-affine fractals and fractal dimension, Phys. Scripta. 32, 257–260.

    Article  Google Scholar 

  • Mandelbrot, B. B., Fractals in Physics (Elsevier, Amsterdam. 1986).

    Google Scholar 

  • Marsan, D. (2006), Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model, J. Geophys. Res. 111, B06305, doi: 10.1029/2005JB004060.

    Article  Google Scholar 

  • Meakin, P., Fractals: Scaling and Growth far From Equilibrium (Cambridge Univ. Press, New York. 1998).

    Google Scholar 

  • Meheust, Y. (2002), Ecoulements dans les fractures ouvertes, Ph. D. Thesis, Univ. Paris VI and Ecole Normale Supérieure, Paris.

    Google Scholar 

  • Okubo, P. G. and Aki, K. (1987), Fractal geometry in the San Andreas fault system, J. Geophys. Res. 92, 345–355.

    Article  Google Scholar 

  • Palumbo, L., Benedetti, L., Bourles, D., Cinque, A., and Finkel, R. (2004), Slip history of the Magnola fault (Apennines, Central Italy) from 36 Cl surface exposure dating: Evidence for strong earthquakes over the Holocene, Earth Planet. Sci. Lett. 225, 163–176.

    Article  Google Scholar 

  • Parsons, T. (2008), Persistent earthquake clusters and gaps from slip on irregular faults, Nature Geosci. 1, 59–63, doi: 10.1038/ngeo.2007.36.

    Article  Google Scholar 

  • Peyrat, S., Olsen, K. B., and Madariaga, R. (2004), Which dynamic rupture parameters can be estimated from strong ground motion and geodetic data?, Pure Appl. Geophys. 161, 2155–2169, doi: 10.1007/s00024-004-2555-9.

    Article  Google Scholar 

  • Power, W. L., Tullis, T. E., and Weeks, J. D. (1988), Roughness and wear during brittle faulting, J. Geophys. Res. 93, 15,268–15,278.

    Article  Google Scholar 

  • Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., and Scholz, C. H. (1987), Roughness of natural fault surfaces, Geophys. Res. Lett. 14, 29–32.

    Article  Google Scholar 

  • Power, W. L. and Tullis, T. E. (1991), Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96, 415–424.

    Article  Google Scholar 

  • Power, W. L. and Durham, W. B. (1997), Topography of natural and artificial fractures in granitic rocks: Implications for studies of rock friction and fluid migration, Int. J. Rock Mech. Min. Sci. 34, 979–989.

    Article  Google Scholar 

  • Renard, F., Voisin, C., Marsan, D., and Schmittbuhl, J. (2006), High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales, Geophys. Res. Lett. 33, L04305, doi: 10.1029/2005GL025038.

    Article  Google Scholar 

  • Rubin, A. M., Gillard, D., and Got, J.-L. (1999), Streaks of microearthquakes along creeping faults, Nature 400, 635–641.

    Article  Google Scholar 

  • Sagy A., Brodsky, E. E., and Axen, G. J. (2007), Evolution of fault-surface roughness with slip, Geology 35, 283–286.

    Article  Google Scholar 

  • Sagy, A. and Brodsky, E. E. (2009), Geometric and rheological asperities in an exposed fault zone, J. Geophys. Res. 114(B02301), doi: 10.1029/2008JB005701.

    Article  Google Scholar 

  • Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., and Ellsworth, W. L. (2002), High-resolution image of Calaveras fault seismicity, J. Geophys. Res. 107(B9), 2186, doi: 10.1029/2001JB000633.

    Article  Google Scholar 

  • Schmittbuhl, J., Chambon, G., Hansen, A., and Bouchon, M. (2006), Are stress distributions along faults the signature of asperity squeeze?, Geophys. Res. Lett. 33, L13307, doi:10.1029/2006GL025952.

    Article  Google Scholar 

  • Schmittbuhl, J., Gentier, S., and Roux, R. (1993), Field measurements of the roughness of fault surfaces, Geophys. Res. Lett. 20, 639–641.

    Article  Google Scholar 

  • Schmittbuhl, J., Vilotte, J., and Roux, S. (1995a), Reliability of self-affine measurements, Phys. Rev. E 51, 131–147.

    Article  Google Scholar 

  • Schmittbuhl, J., Schmitt, F., and Scholz, C. (1995b), Scaling invariance of crack surfaces, J. Geophys. Res. 100, 5953–5973.

    Article  Google Scholar 

  • Schmittbuhl, J., Steyer, A., Jouniaux, L., and Toussaint, R. (2008), Fracture morphology and viscous transport, Int. J. Rock. Mech. Min. Sci. 45, 422–430.

    Article  Google Scholar 

  • Scholz, C. H., The Mechanics of Earthquake and Faulting (Cambridge Univ. Press, New York. 2002).

    Google Scholar 

  • Simonsen, I., Hansen, A., and News, O.M. (1998), Using wavelet transforms for Hurst exponent determination, Phys. Rev. E. 58, 2779–2787.

    Article  Google Scholar 

  • Simonsen, I., Vandembroucq, D., and Roux, S. (2000), Wave scattering from self-affine surfaces, Phys. Rev. E. 61, 5914–7.

    Article  Google Scholar 

  • Smith, R. B. (1977), Formation of folds, boudinage, and mullions in non-Newtonian materials, Geol. Soc. Amer. Bull. 88, 312–320.

    Article  Google Scholar 

  • Stein, M. L. (2002), Fast and exact simulation of fractional Brownian sufaces, J. Comput. Graph. Statist. 11, 587–599.

    Article  Google Scholar 

  • Thouvenot, F. (1998), The ML 5.3 Epagny (French Alps) earthquake of 1996 July 15: A long-awaited event on the Vuache Fault, Geophys. J. Int. 135, 876–892.

    Article  Google Scholar 

  • Twiss, R. J. and Moores, E. M., Structural Geology (W. H. Freeman, New York. 1992).

    Google Scholar 

  • Voisin, C., Campillo, M., Ionescu, I., Hassani, R., and Nguyen, Q.-L. (2002a), Process and signature of initiation on a finite fault system: A spectral approach, Geophys. J. Int. 148, 120–131.

    Google Scholar 

  • Voisin, C., Ionescu, I., and Campillo, M. (2002b), Crack growth resistance and dynamic rupture arrest under slip dependent friction, Phys. Earth Planet. Inter. 131, 279–294.

    Article  Google Scholar 

  • Voss, R.F., Scaling Phenomena in Disorder Systems (Plenum, New York. 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Candela, T. et al. (2009). Characterization of Fault Roughness at Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements. In: Ben-Zion, Y., Sammis, C. (eds) Mechanics, Structure and Evolution of Fault Zones. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_13

Download citation

Publish with us

Policies and ethics