Skip to main content

Realization of the Stereotaxic Surgery

  • Chapter
  • First Online:

Abstract

For addressing the specific objectives of a proposed study, stereotaxic surgery is often used in combination with other techniques. These techniques can include in vivo experimental procedures for activating or inactivating brain structures or transmitter systems, permanent selective lesioning, functional neuroanatomy using tracers and activity markers, and acute or chronic measurements or recordings. Through three examples, this chapter covers the practical realization of a stereotaxic surgery in combination with several techniques: the insertion of a guide cannula for pharmacological microinjections or optogenetic manipulations in rats, the insertion of glass microelectrode in a model of head-restrained rat for semi-chronic electrophysiological recordings and a procedure of microdialysis in the anesthetized mouse. To ensure a proper conduct of such complex stereotaxic surgeries, these procedures are thoroughly described with the preparation of the surgical tools, the adequate protocols for anesthesia and analgesia, and the method to verify the correct placement of the cannula or probe on the stereotaxic holder. The main surgical gestures and procedures including drilling, mounting of anchor screws and fixing cannula and screws with cement are detailed. Through these examples, this chapter is aimed to help users to adequately prepare and perform their own surgeries, in order to obtain an optimal precision and reproducibility in their procedures, with a constant care of the animal’s welfare.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berridge KC, Whishaw IQ (1992) Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp Brain Res 90(2):275–290

    Article  CAS  PubMed  Google Scholar 

  • Blasiak T, Czubak W, Ignaciak A, Lewandowski MH (2010) A new approach to detection of the bregma point on the rat skull. J Neurosci Methods 185(2):199–203

    Google Scholar 

  • Blum D, Torch S, Lambeng N et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65(2):135–172

    Article  CAS  PubMed  Google Scholar 

  • Buchen L (2010) Illuminating the brain. Nature 465:26–28

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Calabresi P, Giacomini P, Bernardi G (1999) Neurophysiology of Parkinson’s disease: from basic research to clinical correlates. Clin Neurophysiol 110(12):2006–2013

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Ong BH, Kambouris NG, Marban E, Tomaselli GF, Balser JR (2000) Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels. J Physiol 524:37–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dudley MW, Howard BD, Cho AK (1990) The interaction of the beta-haloethyl benzylamines, xylamine, and DSP-4 with catecholaminergic neurons. Annu Rev Pharmacol Toxicol 30:387–403

    Article  CAS  PubMed  Google Scholar 

  • Duncan RJS, Sourkes TL, Dubrovsky BO, Quik M (1975) Activity of aldehyde dehydrogenase, aldehyde reductase and acetylcholine esterase in striatum of rats bearing electrolytic lesions of the medial forebrain bundle. J Neurochem 24(1):143–147

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, McGaugh JL (2008) Involvement of the basolateral amygdala α2-adrenoceptors in memory modulation of inhibitory avoidance in the rat. Learn Mem 15(4):238–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferry B, Sandner G, Di Scala G (1995) Neuroanatomical and functional specificity of basolateral amygdaloid nucleus in taste potentiated odor aversion. Neurobiol Learn Mem 64:169–180

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, Wirth S, Di Scala G (1999) Functional interaction between entorhinal cortex and basolateral amygdala during trace conditioning of odor aversion in the rat. Behav Neurosci 113(1):118–125

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Grzanna R (1991) Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system? Prog Brain Res 88:257–268

    Article  CAS  PubMed  Google Scholar 

  • Gervasoni D, Darracq L, Fort P, Souliere S, Chouvet G, Luppi PH (1998) Electrophysiological evidence that noradrenergic neurons of the locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10:964–970

    Article  CAS  PubMed  Google Scholar 

  • Gervasoni D, Peyron C, Rampon C et al (2000) Role and origin of the GABAergic innervations of dorsal raphe serotonergic neurones. J Neurosci 20:4217–4225

    CAS  PubMed  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm 50:55–66

    Article  CAS  Google Scholar 

  • Goldstein LB (1993) Beam-walking in rats: the measurement of motor recovery after injury to the cerebral cortex. Neurosci Protoc 10(3):1–13

    Google Scholar 

  • Jarrard LE (2002) Use of excitotoxins to lesion the hippocampus: update. Hippocampus 12(3):405–414

    Article  PubMed  Google Scholar 

  • Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology. Annu Rev Neurosci 3:169–187

    Article  CAS  PubMed  Google Scholar 

  • King BM (1991) Comparison of electrolytic and radio-frequency and lesion methods. Methods Neurosci 7:90–97

    Article  Google Scholar 

  • Kostrzewa RM (1995) Dopamine receptor supersensitivity. Neurosci Biobehav Rev 19(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Kostrzewa RM (2009) Evolution of neurotoxins: from research modalities to clinical realities. Curr Protoc Neurosci 1: Unit 1.18

    Google Scholar 

  • Kostrzewa RM, Brus R (1998) Destruction of catecholamine-containing neurons by 6-hydroxydopa, an endogenous amine oxidase cofactor. Amino Acids 14(1–3):175–179

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Peris J, Zhong L, Derendorf H (2006) Microdialysis as a tool in local pharmacodynamics. AAPS J 8(2):222–235

    Article  Google Scholar 

  • Livingston-Thomas JM, Hume AW, Doucette TA, Tasker RA (2013) A novel approach to induction and rehabilitation of deficits in forelimb function in a rat model of ischemic stroke. Acta Pharmacol Sin 34(1):104–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGaughy J, Everitt BJ, Robbins TW, Sarter M (2000) The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 115(2):251–263

    Article  CAS  PubMed  Google Scholar 

  • Messier C, Emond S, Ethier K (1998) New techniques in stereotaxic surgery and anesthesia in the mouse. Pharmacol Biochem Behav 63(2):313–318

    Article  Google Scholar 

  • Milner TA, Amaral DG (1984) Evidence for a ventral septal projection to the hippocampal formation of the rat. Exp Brain Res 55(3):579–585

    Article  CAS  PubMed  Google Scholar 

  • Rotman A, Creveling CR (1976) A rationale for the design of cell-specific toxic agents: the mechanism of action of 6-hydroxydopamine. FEBS Lett 72(2):227–230

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Rossner S, Bigl V (1996) Immunolesion by 192IgG-saporin of rat basal forebrain cholinergic system: a useful tool to produce cortical cholinergic dysfunction. Prog Brain Res 109:253–264

    Article  CAS  PubMed  Google Scholar 

  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50(2–3):275–331

    Article  CAS  PubMed  Google Scholar 

  • Schwarting RK, Huston JP (1997) Behavioral and neurochemical dynamics of neurotoxic mesostriatal dopamine lesions. Neurotoxicology 18(3):689–708

    CAS  PubMed  Google Scholar 

  • Urbain N, Rentero N, Gervasoni D, Renaud B, Chouvet G (2002) The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. J Neurosci 22:8665–8675

    CAS  PubMed  Google Scholar 

  • Urbain N, Creamer K, Debonnel G (2006) Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 573:679–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vargo JM, Marshall JF (1996) Unilateral frontal cortex ablation producing neglect causes time-dependent changes in striatal glutamate receptors. Behav Brain Res 77(1–2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG (1992) Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends Neurosci 15(8):285–290

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG (1997) Findings about the cholinergic basal forebrain using immunotoxin to the nerve growth factor receptor. Ann NY Acad Sci 835:20–29

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG (2001) Targeting toxins to neural antigens and receptors. Methods Mol Biol 166:267–276

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Ferry, B., Gervasoni, D., Vogt, C. (2014). Realization of the Stereotaxic Surgery. In: Stereotaxic Neurosurgery in Laboratory Rodent. Springer, Paris. https://doi.org/10.1007/978-2-8178-0472-9_6

Download citation

Publish with us

Policies and ethics