Skip to main content

Génétique des formes autosomiques dominantes de maladie d’Alzheimer

  • Chapter
Traité sur la maladie d’Alzheimer
  • 907 Accesses

Résumé

Au cours des vingt dernières années, l’étude systématique des formes familiales de MA à début précoce a permis l’identification de plusieurs anomalies génétiques responsables. Ces formes autosomiques dominantes représentent moins de 1% de la totalité des MA [1] mais sont déterminantes pour la compréhension physiopathologique. Savoir reconnaître ces formes et disposer d’un diagnostic de certitude est essentiel pour répondre aux questions de conseil génétique. Ces formes autosomiques dominantes sont dues à des mutations ou duplications du gène APP et des mutations des gènes PSEN1 et PSEN2. Environ 85% de ces formes sont dues à des mutations ou duplications du gène APP ou à des mutations des gènes PSEN1 et PSEN2 [2]. L’étude des conséquences des mutations de ces trois gènes a permis de comprendre la cascade amyloïde permettant de la placer comme événement principal responsable de l’affection. Dans ce chapitre, nous proposons une mise au point concernant différents phénotypes et génotypes de ces formes autosomiques dominantes, en se basant notamment sur les données du Centre national de référence malades Alzheimer jeunes (CNR-MAJ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Wallon D, Rousseau S, Rovelet-Lecrux A, et al. (2012) The French series of autosomal dominant early onset Alzheimer’s disease cases: mutation spectrum and cerebrospinal fluid biomarkers. J Alzheimers Dis. 30(4):847–56

    CAS  PubMed  Google Scholar 

  2. Guyant-Marechal L, Campion D, Hannequin D (2009) Génétique de la maladie d’Alzheimer: formes autosomiques dominantes. Revue neurologique 165(3): 223–31

    Article  CAS  PubMed  Google Scholar 

  3. Wisniewski T, Dowjat WK, Buxbaum JD, et al. ( 1998) A novel Polish presenilin-1 mutation (P117L) is associated with familial Alzheimer’s disease and leads to death as early as the age of 28 years. Neuroreport 9(2): 217–1

    Article  CAS  PubMed  Google Scholar 

  4. Golan MP, Styczyńska M, Jóźwiak K, et al. (2007) Early-onset Alzheimer’s disease with a de novo mutation in the presenilin 1 gene. Exp Neurol 208(2): 264–8

    Article  CAS  PubMed  Google Scholar 

  5. Larner AJ, Doran M (2006) Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J Neurol 253(2): 139–58

    Article  CAS  PubMed  Google Scholar 

  6. Raux G, Guyant-Marechal L, Martin C, et al. (2005) Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update. J Med Genet 42(10): 793–5

    Article  CAS  PubMed  Google Scholar 

  7. Larner AJ, Doran M (2009) Genotype-phenotype relationships of presenilin-1 mutations in Alzheimer’s disease: an update. J Alzheimers Dis 17(2): 259–65

    CAS  PubMed  Google Scholar 

  8. Zekanowski C, Golan MP, Krzyśko KA, et al. (2006) Two novel presenilin 1 gene mutations connected with frontotemporal dementia-like clinical phenotype: genetic and bioinformatic assessment. Exp. Neurol 200(1): 82–8

    Article  CAS  PubMed  Google Scholar 

  9. Dermaut B, Kumar-Singh S, Engelborghs S, et al. (2004) A novel presenilin 1 mutation associated with Pick’s disease but not beta-amyloid plaques. Ann Neurol 55(5): 617–26

    Article  CAS  PubMed  Google Scholar 

  10. Ryan NS, Rossor MN (2010) Correlating familial Alzheimer’s disease gene mutations with clinical phenotype. Biomark Med 4(1): 99–112

    Article  CAS  PubMed  Google Scholar 

  11. Mann DM, Pickering-Brown SM, Takeuchi A, et al. (2001) Amyloid angiopathy and variability in amyloid beta deposition is determined by mutation position in presenilin-1-linked Alzheimer’s disease. Am J Pathol 158(6): 2165–75

    Article  CAS  PubMed  Google Scholar 

  12. Karlstrom H, Brooks WS, Kwok JBJ, et al. (2008) Variable phenotype of Alzheimer’s disease with spastic paraparesis. J Neurochem 104(3): 573–83

    CAS  PubMed  Google Scholar 

  13. Assini A, Terreni L, Borghi R, et al. (2003) Pure spastic paraparesis associated with a novel presenilin 1 R278K mutation. Neurology 60(1): 150

    Article  CAS  PubMed  Google Scholar 

  14. Dumanchin C, Tournier I, Martin C, et al. (2006) Biological effects of four PSEN1 gene mutations causing Alzheimer disease with spastic paraparesis and cotton wool plaques. Hum Mutat 27(10): 1063

    Article  PubMed  Google Scholar 

  15. Marrosu MG, Floris G, Costa G, et al. (2006) Dementia, pyramidal system involvement, and leukoencephalopathy with a presenilin 1 mutation. Neurology 66(1): 108–11

    Article  CAS  PubMed  Google Scholar 

  16. Duyckaerts C (2006) Nosologie des démences: le point de vue du neuropathologiste. Revue neurologique 162(10): 921–8

    Article  CAS  PubMed  Google Scholar 

  17. Scarmeas N, Hadjigeorgiou GM, Papadimitriou A, et al. (2004) Motor signs during the course of Alzheimer disease. Neurology 63(6): 975–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jimenez-Escrig A, Rabano A, Guerrero C, et al. (2004) New V272A presenilin 1 mutation with very early onset subcortical dementia and parkinsonism. Eur J Neurol 11(10): 663–9

    Article  CAS  PubMed  Google Scholar 

  19. Takao M, Ghetti B, Hayakawa I, et al. (2002) A novel mutation (G217D) in the Presenilin 1 gene ( PSEN1) in a Japanese family: presenile dementia and parkinsonism are associated with cotton wool plaques in the cortex and striatum. Acta Neuropathol 104(2): 155–70

    Article  CAS  PubMed  Google Scholar 

  20. Ishikawa A, Piao Y-S, Miyashita A, et al. (2005) A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. Ann Neurol 57(3): 429–34

    Article  CAS  PubMed  Google Scholar 

  21. Snider BJ, Norton J, Coats MA, et al. (2005) Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch Neurol 62(12): 1821–30

    Article  PubMed  Google Scholar 

  22. Lippa CF, Fujiwara H, Mann DM, et al. (1998) Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153(5): 1365–70

    Article  CAS  PubMed  Google Scholar 

  23. Leverenz JB, Fishel MA, Peskind ER, et al. 2006) Lewy body pathology in familial Alzheimer disease: evidence for disease-and mutation-specific pathologic phenotype. Arch Neurol 63(3): 370–6

    Google Scholar 

  24. Chao CP, Kotsenas AL, Broderick DF (2006) Cerebral amyloid angiopathy: CT and MR imaging findings. Radiographics 26(5): 1517–31

    Article  PubMed  Google Scholar 

  25. Martin JJ, Gheuens J, Bruyland M, et al. (1991) Early-onset Alzheimer’s disease in 2 large Belgian families. Neurology 41(1): 62–8

    Article  CAS  PubMed  Google Scholar 

  26. Moehlmann T, Winkler E, Xia X, et al. (2002) Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Abeta 42 production. Proc. Natl. Acad Sci USA 99(12): 8025–30

    Article  CAS  PubMed  Google Scholar 

  27. Miklossy J, Taddei K, Suva D, et al. (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer’s disease. Neurobiol Aging 24(5): 655–62

    Article  CAS  PubMed  Google Scholar 

  28. Anheim M, Hannequin D, Boulay C, et al. (2007) Ataxic variant of Alzheimer’s disease caused by Pro117Ala PSEN1 mutation. Journal of neurology, neurosurgery, and psychiatry 78(12): 1414–5

    Article  CAS  PubMed  Google Scholar 

  29. Piccini A, Zanusso G, Borghi R, et al. (2007) Association of a presenilin 1 S170F mutation with a novel Alzheimer disease molecular phenotype. Arch Neurol 64(5): 738–45

    Article  PubMed  Google Scholar 

  30. Guerreiro RJ, Baquero M, Blesa R, et al. (2010) Genetic screening of Alzheimer’s disease genes in Iberian and African samples yields novel mutations in presenilins and APR Neurobiol Aging 31(5): 725–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sherrington R, Froelich S, Sorbi S, et al. (1996) Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 5(7): 985–8

    Article  CAS  PubMed  Google Scholar 

  32. Jayadev S, Leverenz JB, Steinbart E, et al. (2010) Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133(4): 1143–54

    Article  PubMed  Google Scholar 

  33. Marcon G, Di Fede G, Giaccone G, et al. (2009) A novel Italian presenilin 2 gene mutation with prevalent behavioral phenotype. J. Alzheimers Dis 16(3): 509–11

    CAS  PubMed  Google Scholar 

  34. Piscopo P, Marcon G, Piras MR, et al. (2008) A novel PSEN2 mutation associated with a peculiar phenotype. Neurology 70(17): 1549–54

    Article  CAS  PubMed  Google Scholar 

  35. Hardy J, Allsop D ( 1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10): 383–8

    Article  CAS  PubMed  Google Scholar 

  36. Hardy J (1997) The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc Natl Acad Sci USA 94(6): 2095–7

    Article  CAS  PubMed  Google Scholar 

  37. Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8(2): 136–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Goate A, Chartier-Harlin MC, Mullan M, et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311): 704–6

    Article  CAS  PubMed  Google Scholar 

  39. Mullan M, Crawford F, Axelman K, et al. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nature genetics 1(5): 345–7

    Article  CAS  PubMed  Google Scholar 

  40. Grabowski TJ, Cho HS, Vonsattel JP, et al. (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49(6): 697–705

    Article  CAS  PubMed  Google Scholar 

  41. Di Fede G, Catania M, Morbin M, et al. (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323(5920): 1473–7

    Article  PubMed Central  PubMed  Google Scholar 

  42. Maat-Schieman M, Roos R, van Duinen S (2005) Hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neuropathology 25(4): 288–97

    Article  PubMed  Google Scholar 

  43. Roks G, Van Harskamp F, De Koning I, et al. (2000) Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). Brain 123(Pt 10): 2130–40

    Article  PubMed  Google Scholar 

  44. Rosenberg CK, Pericak-Vance MA, Saunders AM, et al. (2000) Lewy body and Alzheimer pathology in a family with the amyloid-beta precursor protein APP717 gene mutation. Acta Neuropathol 100(2): 145–52

    Article  CAS  PubMed  Google Scholar 

  45. McKeith IG, Dickson DW, Lowe J, et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12): 1863–72

    Article  CAS  PubMed  Google Scholar 

  46. Clinton LK, Blurton-Jones M, Myczek K, et al. (2010) Synergistic Interactions between A, Tau, and-Synuclein: Acceleration of Neuropathology and Cognitive Decline. J Neurosci 30(21): 7281–9

    Article  CAS  PubMed  Google Scholar 

  47. Rovelet-Lecrux A, Hannequin D, Raux G, et al. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature genetics 38(1): 24–6

    Article  CAS  PubMed  Google Scholar 

  48. Cabrejo L, Chassagne P, Doucet J, et al. (2006) [Sporadic cerebral amyloidotic angiopathy]. Revue neurologique 162(11): 1059–67

    Article  CAS  PubMed  Google Scholar 

  49. Guyant-Marechal I, Berger E, Laquerriere A, et al. (2008) Intrafamilial diversity of phenotype associated with app duplication. Neurology 71(23): 1925–6

    Article  CAS  PubMed  Google Scholar 

  50. Kasuga K, Shimohata T, Nishimura A, et al. (2009) Identification of independent APP locus duplication in Japanese patients with early-onset Alzheimer disease. J Neurol Neurosurg Psychiatry 80(9): 1050–2

    Article  CAS  PubMed  Google Scholar 

  51. McNaughton D, Knight W, Guerreiro R, et al. (2010) Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiology of Aging 33(2):426.e13–21

    Google Scholar 

  52. Pottier C, Wallon D, Rovelet-Lecrux A, et al. (2012) Amyloid-β Protein Precursor Gene Expression in Alzheimer’s Disease and Other Conditions. J. Alzheimers Dis 28(3): 561–6

    CAS  PubMed  Google Scholar 

  53. Sleegers K, Brouwers N, Gijselinck I, et al. (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129(Pt 11): 2977–83

    Article  PubMed  Google Scholar 

  54. Lai F, Williams RS (1989) A prospective study of Alzheimer disease in Down syndrome. Archives of neurology 46(8): 849–53

    Article  CAS  PubMed  Google Scholar 

  55. Schupf N, Pang D, Patel BN, et al. (2003) Onset of dementia is associated with age at menopause in women with Down’s syndrome. Ann Neurol 54(4): 433–8

    Article  PubMed  Google Scholar 

  56. Menéndez M (2005) Down syndrome, Alzheimer’s disease and seizures. Brain Dev 27(4): 246–52

    Article  PubMed  Google Scholar 

  57. de Souza LC, Lamari F, Belliard S, et al. (2011) Cerebrospinal fluid biomarkers in the differential diagnosis of Alzheimer’s disease from other cortical dementias. J Neurol Neurosurg Psychiatry 82(3): 240–6

    Article  PubMed  Google Scholar 

  58. Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4): 652–6

    Article  CAS  PubMed  Google Scholar 

  59. Buerger K, Ewers M, Pirttilä T, et al. (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129(Pt 11): 3035–41

    Article  PubMed  Google Scholar 

  60. Tapiola T, Alafuzoff I, Herukka SK, et al. (2009) Cerebrospinal fluid ta-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3): 382–9

    Google Scholar 

  61. Fagan AM, Mintun MA, Shah AR, et al. (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1(8–9): 371–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ringman JM, Younkin SG, Pratico D, et al. (2008) Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71(2): 85–92

    Article  CAS  PubMed  Google Scholar 

  63. Fortea J, Lladó A, Bosch B, et al. (2011) Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease Families with PSEN1 Mutations. Neurodegener Dis 8(4): 202–7

    Article  CAS  PubMed  Google Scholar 

  64. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nature reviews 9(10): 768–78

    Article  CAS  PubMed  Google Scholar 

  65. Genin E, Hannequin D, Wallon D, et al. (2011) APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 16(9): 903–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Castellano JM, Kim J, Stewart FR, et al. (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3(89): 89ra57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wallon .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Wallon, D., Campion, D., Hannequin, D. (2013). Génétique des formes autosomiques dominantes de maladie d’Alzheimer. In: Traité sur la maladie d’Alzheimer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0443-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0443-9_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0442-2

  • Online ISBN: 978-2-8178-0443-9

Publish with us

Policies and ethics