Skip to main content

Stress oxydant et maladie d’Alzheimer

  • Chapter
Book cover Traité sur la maladie d’Alzheimer
  • 966 Accesses

Résumé

La théorie du stress oxydant [1] englobe de près ou de loin toutes les hypothèses communément admises pour expliquer la perte neuronale dans la maladie d’Alzheimer (MA). Elle implique des dysfonctionnements mitochondriaux [2], les catalyseurs métalliques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134): 689

    Article  CAS  PubMed  Google Scholar 

  2. Wallace DC (1992) Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 256(5057): 628

    Article  CAS  PubMed  Google Scholar 

  3. Huang X, Moir RD, Tanzi RE, et al. (2004) Redox-Active Metals, Oxidative Stress, and Alzheimer’s Disease Pathology. Annals of the New York Academy of Sciences 1012: 153–63

    Article  CAS  PubMed  Google Scholar 

  4. Allan Butterfield (2002) Amyloid β-peptide (1–42)-induced Oxidative Stress and Neurotoxicity: Implications for Neurodegeneration in Alzheimer’s Disease Brain. A Review. Free Radical Research 36: 1307–13

    Article  CAS  Google Scholar 

  5. Delattre J (2005) Radicaux libres et stress oxydant: aspects biologiques et pathologiques. P ris: Éditions Tec & Doc

    Google Scholar 

  6. Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology and Medicine 51:1014–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Smith MA, Rottkamp CA, Nunomura A, et al. (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta (1502): 139–44

    Google Scholar 

  8. Nunomura A, Castellani RJ, Zhu X, et al. (2006) Involvement of Oxidative Stress in Alzheimer Disease. J Neuropathol Exp Neurol 65: 631–41

    Article  CAS  PubMed  Google Scholar 

  9. Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85: 3036–40

    Article  CAS  PubMed  Google Scholar 

  10. Barouki R (2006) Stress oxydant et vieillissement. Med Sci (Paris) 22: 266–72

    Article  Google Scholar 

  11. Dawson V, Kizushi V, Huang P, et al. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16(8): 2479–87

    CAS  PubMed  Google Scholar 

  12. Lauderback CM, Kanski J, Hackett JM, et al. (2002) Apolipoprotein E modulates Alzheimer’s A [beta](1–42)-induced oxidative damage to synaptosomes in an allele-specific manner. Brain research 924(1): 90–7

    Article  CAS  PubMed  Google Scholar 

  13. Miyata M, Smith JD (1996) Apolipoprotein E allele—specific antioxidant activity and effects on cytotoxicity by oxidative insults and β—amyloid peptides. Nature Genetics 14: 55–61

    Article  CAS  PubMed  Google Scholar 

  14. Marques CA (2003) Neurotoxic Mechanisms Caused by the Alzheimer’s Disease-linked Swedish Amyloid Precursor Protein Mutation: Oxidative stress, caspases, and the jnk pathway. J Biol Chem 278: 28294–302

    Article  CAS  PubMed  Google Scholar 

  15. LaFontaine MA, Mattson MP, Butterfield DA (2002) Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer’s disease. Neurochem Res 27(5): 417–21

    Article  CAS  PubMed  Google Scholar 

  16. Michel F, Bonnefond-Rousselot D, Mas E, et al. (2008) Biomarqueurs de la peroxydation lipidique: aspects analytiques. Ann Biol Clin 66(6): 605–20

    CAS  Google Scholar 

  17. Montine TJ, Montine KS, McMahan W, et al. (2005) F2-Isoprostanes in Alzheimer and Other Neurodegenerative Diseases. Antioxidants & Redox Signaling 7: 269–75

    Article  CAS  Google Scholar 

  18. Praticò D (2010) The neurobiology of isoprostanes and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) — Molecular and Cell Biology of Lipids 1801: 930–3

    Article  Google Scholar 

  19. Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–9

    Article  CAS  PubMed  Google Scholar 

  20. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging (19): 33–6

    Google Scholar 

  21. Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiology of Aging 27: 1094–9

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Smith MA, Avilá J, et al. (2005) Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radical Biology and Medicine 38: 746–54

    Article  CAS  PubMed  Google Scholar 

  23. Reed T, Perluigi M, Sultana R, et al. (2008) Redox proteomic identification of 4-Hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30(1): 107–20

    Article  CAS  PubMed  Google Scholar 

  24. Rester MI, Scheffer PG, Koel-Simmelink MJ, et al. (2011) Serial CSF sampling in Alzheimer’s disease: specific versus non-specific markers. Neurobiology of Aging [Internet] [cité 2011 nov 14]; Available from: http://www.linkinghub.elsevier.com/retrieve/pii/S0197458011001965/retrieve/pii/S0197458011001965

  25. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58: 730–5

    Article  CAS  PubMed  Google Scholar 

  26. Hensley K, Hall N, Subramaniam R, et al. (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65(5): 2146–56

    Article  CAS  PubMed  Google Scholar 

  27. Yatin SM, Varadarajan S (2000) Vitamin E Prevents Alzheimer’s Amyloid beta-Peptide (1–42)-Induced Neuronal Protein Oxidation and Reactive Oxygen Species Production. J Alzheimers Dis 2(2): 123–31

    CAS  PubMed  Google Scholar 

  28. Smith MA, Sayre LM, Monnier VM, Perry G (1995) Radical AGEing in Alzheimer’s disease. Trends in neurosciences 18(4): 172–6

    Article  CAS  PubMed  Google Scholar 

  29. Du Yan S, Zhu H, Fu J, et al. (1997) Amyloid-β peptide-Receptor for Advanced Glycation Endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: A proinflammatory pathway in Alzheimer disease. Proceedings of the National Academy of Sciences 94(10): 5296–301

    Article  CAS  Google Scholar 

  30. Morel Y, Barouki R (1998) Influence du stress oxydant sur la régulation des gènes. Med Sci (Paris) (14): 713–21

    Article  Google Scholar 

  31. Gomez-Ramos A, Diaz-Nido J, Smith MA, et al. (2003) Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neuroscience Research 71(6): 863–70

    Article  CAS  Google Scholar 

  32. Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Research 35: 7497–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96: 825–32

    Article  CAS  PubMed  Google Scholar 

  34. Nunomura A, Chiba S, Lippa CF, et al. (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17: 108–13

    Article  CAS  PubMed  Google Scholar 

  35. Sultana R, Butterfield DA (2009) Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. J Bioenerg Biomembr 41: 441–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(suppl 2): 265–79

    PubMed Central  Google Scholar 

  37. Dimou E, Booij J, Rodrigues M, et al. (2010) Amyloid PET and MRI in Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 6(3): 312–9

    Article  Google Scholar 

  38. Bonda DJ, Wang X, Perry G, et al. (2010) Mitochondrial Dynamics in Alzheimer’s Disease. Drugs & Aging 27(3): 181–92

    Article  CAS  Google Scholar 

  39. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113): 787–95

    Article  CAS  PubMed  Google Scholar 

  40. Bubber P, Haroutunian V, Fisch G, et al. (2005) Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann Neurol 57(5): 695–703

    Article  CAS  PubMed  Google Scholar 

  41. Parker Jr WD, Parks J, Filley CM, Kleinschmidt-DeMasters B (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44(6):1090–6

    Article  PubMed  Google Scholar 

  42. Parker WD, Parks JK (1995) Cytochrome c oxidase in Alzheimer’s disease brain. Neurology 45(3): 482–6

    Article  PubMed  Google Scholar 

  43. Davis JN, Parker WD (1998) Evidence That Two Reports of mtDNA Cytochrome c Oxidase « Mutations » in Alzheimer’s Disease Are Based on nDNA Pseudogenes of Recent Evolutionary Origin. Biochem Biophys Res Commun 244(3): 877–83

    Article  CAS  PubMed  Google Scholar 

  44. Eckert A, Keil U, Marques CA, et al. (2003) Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 66(8): 1627–34

    Article  CAS  PubMed  Google Scholar 

  45. Sheehan JP, Swerdlow RH, Miller SW, et al. (1997) Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J Neurosci 17(12): 4612–22

    CAS  PubMed  Google Scholar 

  46. Smith MA, Zhu X, Tabaton M, et al. (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19(1): 363–72

    PubMed Central  PubMed  Google Scholar 

  47. Loeffler D, Connor J, Juneau P, et al. (1995) Transform and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65(2): 710–6

    Article  CAS  PubMed  Google Scholar 

  48. Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71(suppl): 621S–9S

    CAS  PubMed  Google Scholar 

  49. Bjertness E, Candy J, Torvik A (1996) Content of brain aluminum is not elevated in Alzheimer disease. Alzheimer Dis Assoc Disord 10: 171–4

    Article  CAS  PubMed  Google Scholar 

  50. Hung YH, Bush AI, Cherny RA (2009) Copper in the brain and Alzheimer’s disease. JBIC J Biol Inorg Chem 15(1): 61–76

    Article  Google Scholar 

  51. Deibel M, Ehmann W, Markesbery W (1997) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143: 137–42

    Article  Google Scholar 

  52. Huang X, Atwood CS, Hartshorn MA, et al. (1999) The Aβ Peptide of Alzheimer’s Disease Directly Produces Hydrogen Peroxide through Metal Ion Reduction. Biochemistry 38: 7609–16

    Article  CAS  PubMed  Google Scholar 

  53. Marchesi VT (2011) Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. The FASEB Journal 25: 5–13

    Article  CAS  Google Scholar 

  54. Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging 24(3): 415–20

    Article  CAS  PubMed  Google Scholar 

  55. Butterfield DA, Sultana R (2011) Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease. J Amino Acids 2011: 1–10

    Article  Google Scholar 

  56. Caspersen C (2005) Mitochondrial A: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. The FASEB Journal [Internet] [cité 2011 déc 6]; Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.05-3735fje/cgi/doi/10.1096/fj.05-3735fje

  57. Crouch PJ, Cimdins K, Duce JA, et al. (2007) Mitochondria in Aging and Alzheimer’s Disease. Rejuvenation Research 10(3): 349–58

    Article  CAS  PubMed  Google Scholar 

  58. Yatin S, Link C, Butterfield D (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol Aging 20: 325–30

    Article  CAS  PubMed  Google Scholar 

  59. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s Amyloid β-Peptide-Associated Free Radical Oxidative Stress and Neurotoxicity. J Struct Biol 130: 184–208

    Article  CAS  PubMed  Google Scholar 

  60. Sagara Y, Dargusch R, Klier FG, et al. (1996) Increased antioxidant enzyme activity in amyloid beta protein-resistant cells. J Neurosci 16(2): 497

    CAS  PubMed  Google Scholar 

  61. Lee CYD, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. Journal of Neural Transmission 117(8): 949–60

    Article  CAS  PubMed  Google Scholar 

  62. Mandrekar S, Jiang Q, Lee CYD, et al. (2009) Microglia Mediate the Clearance of Soluble A through Fluid Phase Macropinocytosis. J Neurosci 29(13): 4252–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Holmes C, Cunningham C, Zotova E, et al. (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10): 768–74

    Article  CAS  PubMed  Google Scholar 

  64. Wilkinson BL, Cramer PE, Varvel NH, et al. (2012) Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol Aging 33(1): 197.e21–197.e32

    Article  CAS  Google Scholar 

  65. Park L, Zhou P, Pitstick R, et al. (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proceedings of the National Academy of Sciences 105(4): 1347–52

    Article  CAS  Google Scholar 

  66. Pasinetti G, Aisen P (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87(2): 319–24

    Article  CAS  PubMed  Google Scholar 

  67. Lüth HJ, Holzer M, Gärtner U, et al. (2001) Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer’s disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Research 913(1): 57–67

    Article  PubMed  Google Scholar 

  68. Wadsworth TL, Bishop JA, Pappu AS, et al. (2008) Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J Alzheimers Dis 14(2): 225–34

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Thal L, Grundman M, Berg J, et al. (2003) Idebenone treatment fails to slow cognitive decline in Alzheimer’s disease. Neurology 61(11): 1498–502

    Article  CAS  PubMed  Google Scholar 

  70. Okun I, Tkachenko S, Khvat A, et al. (2010) From anti-allergic to anti-Alzheimer’s: Molecular pharmacology of Dimebon. Curr Alzheimer Res 7: 97–112

    Article  CAS  PubMed  Google Scholar 

  71. Doody RS, Gavrilova SI, Sano M, et al. (2008) Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. The Lancet 372(9634): 207–15

    Article  CAS  Google Scholar 

  72. Petersen RC, Thomas RG, Grundman M, et al. (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. New Engl J Med 352(23): 2379–88

    Article  CAS  PubMed  Google Scholar 

  73. Sano M, Ernesto C, Thomas RG, et al. (1997) A Controlled Trial of Selegiline, Alpha-Tocopherol, or Both as Treatment for Alzheimer’s Disease. New Engl J Med 336(17): 1216–22

    Article  CAS  PubMed  Google Scholar 

  74. Montgomery S, Thal L, Amrein R (2003) Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 18: 61–71

    Article  PubMed  Google Scholar 

  75. Ritchie CW (2003) Metal-Protein Attenuation With Iodochlorhydroxyquin (Clioquinol) Targeting A Amyloid Deposition and Toxicity in Alzheimer Disease: A Pilot Phase 2 Clinical Trial. Arch Neurol 60(12): 1685–91

    Article  PubMed  Google Scholar 

  76. Adlard PA, Cherny RA, Finkelstein DI, et al. (2008) Rapid Restoration of Cognition in Alzheimer’s Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ. Neuron 59(1): 43–55

    Article  CAS  PubMed  Google Scholar 

  77. Baum L, Lam CWK, Cheung SK-K, et al. (2008) Six-Month Randomized, Placebo-Controlled, Double-Blind, Pilot Clinical Trial of Curcumin in Patients With Alzheimer Disease. J Clin Psychopharmacol 28(1): 110–3

    Article  PubMed  Google Scholar 

  78. ADAPT Research Group (2008) Cognitive Function Over Time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): Results of a Randomized, Controlled Trial of Naproxen and Celecoxib. Arch Neurol 65(7): 896–905

    Article  PubMed Central  Google Scholar 

  79. Green RC, Schneider LS, Amato DA, et al. (2009) Effect of Tarenflurbil on Cognitive Decline and Activities of Daily Living in Patients With Mild Alzheimer Disease: A Randomized Controlled Trial. JAMA 302(23): 2557–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Pasqualetti P, Bonomini C, Dal Forno G, et al. (2009) A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res 21(2): 102–10

    Article  CAS  PubMed  Google Scholar 

  81. Harraz MM, Marden JJ, Zhou W, et al. (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. Journal of Clinical Investigation [Internet] [cité 2011 déc 7]; Available from: http://www.jci.org"/>/articles/view/34060/articles/view/34060

  82. Qin W (2003) Cyclooxygenase (COX)-2 and COX-1 Potentiate beta-Amyloid Peptide Generation through Mechanisms That Involve gamma-Secretase Activity. J Biol Chem 278(51): 50970–7

    Article  CAS  PubMed  Google Scholar 

  83. Cole G, Frautschy S (2010) Mechanisms of action of non-steroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease. CNS Neurol Disord Drug Targets 9: 140–8

    Article  CAS  PubMed  Google Scholar 

  84. Dumont M, Wille E, Calingasan NY, et al. (2010) N-iminoethyl-1-lysine improves memory and reduces amyloid pathology in a transgenic mouse model of amyloid deposition. Neurochemistry International 56(2): 345–51

    Article  CAS  PubMed  Google Scholar 

  85. Qin W, Haroutunian V, Katsel P, et al. (2009) PGC-1 Expression Decreases in the Alzheimer Disease Brain as a Function of Dementia. Arch Neurol 66(3): 352–61

    Article  PubMed Central  PubMed  Google Scholar 

  86. Nicolakakis N, Aboulkassim T, Ongali B, et al. (2008) Complete Rescue of Cerebrovascular Function in Aged Alzheimer’s Disease Transgenic Mice by Antioxidants and Pioglitazone, a Peroxisome Proliferator-Activated Receptor Agonist. J Neurosci 28(37): 9287–96

    Article  CAS  PubMed  Google Scholar 

  87. Escribano L, Simón A-M, Pérez-Mediavilla A, et al. (2009) Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer’s disease mouse model. Biochem Biophys Res Commun 379(2): 406–10

    Article  CAS  PubMed  Google Scholar 

  88. Watson GS (2005) Preserved Cognition in Patients With Early Alzheimer Disease and Amnestic Mild Cognitive Impairment During Treatment With Rosiglitazone: A Preliminary Study. Am J Geriatr Psychiatry 13(11): 950–8

    PubMed  Google Scholar 

  89. Risner ME, Saunders AM, Altman JFB, et al. (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. The Pharmacogenomics Journal [Internet] [cité 2011 déc 7]; Available from: http://www.nature.com/doifinder/10.1038/sj.tpj.6500369/doifinder/10.1038/sj.tpj.6500369

  90. Wang J, Ho L, Zhao W, et al. (2008) Grape-Derived Polyphenolics Prevent A Oligomerization and Attenuate Cognitive Deterioration in a Mouse Model of Alzheimer’s Disease. J Neurosci 28(25): 6388–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Li W, Kong A-N (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Molecular Carcinogenesis 48(2): 91–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Kanninen K, Malm TM, Jyrkkänen H-K, et al. (2008) Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Molecular and Cellular Neuroscience 39(3): 302–13

    Article  CAS  PubMed  Google Scholar 

  93. Kanninen K, Heikkinen R, Malm T, et al. (2009) Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences 106(38): 16505–10

    Article  CAS  Google Scholar 

  94. Dumont M, Wille E, Calingasan NY, et al. (2009) Triterpenoid CDDO-methylamide improves memory and decreases amyloid plaques in a transgenic mouse model of Alzheimer’s disease. J Neurochem109(2): 502–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Liby K (2005) The Synthetic Triterpenoids, CDDO and CDDO-Imidazolide, Are Potent Inducers of Heme Oxygenase-1 and Nrf2/ARE Signaling. Cancer Research 65(11): 4789–98

    Article  CAS  PubMed  Google Scholar 

  96. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nature Reviews Cancer 7(5): 357–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gilbert .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Gilbert, T., Drai, J., Bonnefoy, M. (2013). Stress oxydant et maladie d’Alzheimer. In: Traité sur la maladie d’Alzheimer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0443-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0443-9_10

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0442-2

  • Online ISBN: 978-2-8178-0443-9

Publish with us

Policies and ethics