Skip to main content

De la bonne utilisation des antifongiques systémiques en réanimation

  • Chapter
Infectiologie en réanimation

Résumé

Une enquête de prévalence menée un jour donné en France a montré que les antifongiques sont utilisés chez 7,5 % des patients présents en réanimation [1]. Il convient donc pour les réanimateurs d’approfondir les connaissances sur les propriétés pharmacocinétiques et pharmacodynamiques de ces molécules. Cette revue ne reprendra pas l’efficacité respective de chacun des produits en fonction des indications. Après un bref rappel des spectres d’activité des molécules disponibles (tableau I), nous décrirons les particularités pharmacologiques, pharmacocinétiques et pharmacodynamiques utiles pour le réanimateur et les principaux problèmes auxquels ils peuvent être confrontés. Les antifongiques appartiennent à quatre grandes familles : les azolés, les polyènes, la 5-fluorocytosine et les candines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Azoulay E, Dupont H, Tabah A, et al. (2012) Systemic antifungal therapy in critically ill patients without invasive fungal infection*. Crit Care Med 40: 813–22

    Article  PubMed  CAS  Google Scholar 

  2. Leroy O, Gangneux JP, Montravers P, et al. (2009) Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006). Crit Care Med 37: 1612–8

    Article  PubMed  Google Scholar 

  3. Fournier P, Schwebel C, Maubon D, et al. (2011) Antifungal use influences Candida species distribution and susceptibility in the intensive care unit. J Antimicrob Chemother 66: 2880–6

    Article  PubMed  CAS  Google Scholar 

  4. Sinnollareddy M, Peake SL, Roberts MS, et al. (2011) Pharmacokinetic evaluation of fluconazole in critically ill patients. Expert Opin Drug Metab Toxicol 7: 1431–40

    Article  PubMed  CAS  Google Scholar 

  5. Launay-Vacher V, Deray V (2003) Maniement du fluconazole chez le patient insuffisant rénal (Fluconazole in patients with renal insufficiency). Réanimation 12: 253–7

    Article  Google Scholar 

  6. Patel K, Roberts JA, Lipman J, et al. (2011) Population pharmacokinetics of fluconazole in critically ill patients receiving continuous venovenous hemodiafiltration: using Monte Carlo simulations to predict doses for specified pharmacodynamic targets. Antimicrob Agents Chemother 55: 5868–73

    Article  PubMed  CAS  Google Scholar 

  7. Clancy CJ, Yu VL, Morris AJ, et al. (2005) Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob Agents Chemother 49: 3171–7

    Article  PubMed  CAS  Google Scholar 

  8. Baddley JW, Patel M, Bhavnani SM, et al. (2008) Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 52: 3022–8

    Article  PubMed  CAS  Google Scholar 

  9. Lewis RE, Kontoyiannis DP, Darouiche RO, et al. (2002) Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheterrelated bloodstream infection. Antimicrob Agents Chemother 46: 3499–505

    Article  PubMed  CAS  Google Scholar 

  10. Tumbarello M, Posteraro B, Trecarichi EM, et al. (2007) Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol 45: 1843–50

    Article  PubMed  CAS  Google Scholar 

  11. Wang JL, Chang CH, Young-Xu Y, Chan KA (2010) Systematic review and meta-analysis of the tolerability and hepatotoxicity of antifungals in empirical and definitive therapy for invasive fungal infection. Antimicrob Agents Chemother 54: 2409–19

    Article  PubMed  CAS  Google Scholar 

  12. Pascual A, Calandra T, Bolay S, et al. (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46: 201–11

    Article  PubMed  CAS  Google Scholar 

  13. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41: 913–58

    Article  PubMed  CAS  Google Scholar 

  14. Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86: 805–17

    Article  PubMed  CAS  Google Scholar 

  15. Bruggemann RJ, Alffenaar JW, Blijlevens NM, et al. (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48: 1441–58

    Article  PubMed  Google Scholar 

  16. Andes D, Pascual A, Marchetti O (2009) Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother 53: 24–34

    Article  PubMed  CAS  Google Scholar 

  17. Myrianthefs P, Markantonis SL, Evaggelopoulou P, et al. (2010) Monitoring plasma voriconazole levels following intravenous administration in critically ill patients: an observational study. Int J Antimicrob Agents 35: 468–72

    Article  PubMed  CAS  Google Scholar 

  18. Sinnollareddy M, Peake SL, Roberts MS, et al. (2012) Using pharmacokinetics and pharmacodynamics to optimise dosing of antifungal agents in critically ill patients: a systematic review. Int J Antimicrob Agents 39: 1–10

    Article  PubMed  CAS  Google Scholar 

  19. Katragkou A, Chatzimoschou A, Simitsopoulou M, et al. (2008) Differential activities of newer antifungal agents against Candida albicans and Candida parapsilosis biofilms. Antimicrob Agents Chemother 52: 357–60

    Article  PubMed  CAS  Google Scholar 

  20. Xhaard A, Lanternier F, Porcher R, et al. (2012) Mucormycosis after allogeneic haematopoietic stem cell transplantation: a French Multicentre Cohort Study (2003-2008). Clin Microbiol Infect

    Google Scholar 

  21. Minet C, Bonadona A, Tabah A, et al. (2009) (Non-fatal disseminated mucormycosis in a solid organ transplant). Rev Mal Respir 26: 998–1002

    Article  PubMed  CAS  Google Scholar 

  22. Bellmann R, Egger P, Gritsch W, et al. (2003) Amphotericin B lipid formulations in critically ill patients on continuous veno-venous haemofiltration. J Antimicrob Chemother 51: 671–81

    Article  PubMed  CAS  Google Scholar 

  23. Mora-Duarte J, Betts R, Rotstein C, et al. (2002) Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347: 2020–9

    Article  PubMed  CAS  Google Scholar 

  24. Cheng JT, Witty RT, Robinson RR, Yarger WE (1982) Amphotericin B nephrotoxicity: increased renal resistance and tubule permeability. Kidney Int 22: 626–33

    Article  PubMed  CAS  Google Scholar 

  25. Walev I, Bhakdi S (1996) Possible reason for preferential damage to renal tubular epithelial cells evoked by amphotericin B. Antimicrob Agents Chemother 40: 1116–20

    PubMed  CAS  Google Scholar 

  26. Wingard JR, Kubilis P, Lee L, et al. (1999) Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 29: 1402–7

    Article  PubMed  CAS  Google Scholar 

  27. Herbrecht R, Denning DW, Patterson TF, et al. (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347: 408–15

    Article  PubMed  CAS  Google Scholar 

  28. Harbarth S, Pestotnik SL, Lloyd JF, et al. (2001) The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med 111: 528–34

    Article  PubMed  CAS  Google Scholar 

  29. Bates DW, Su L, Yu DT, et al. (2001) Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 32: 686–93

    Article  PubMed  CAS  Google Scholar 

  30. Eriksson U, Seifert B, Schaffner A (2001) Comparison of effects of amphotericin B deoxycholate infused over 4 or 24 hours: randomized controlled trial. BMJ 322: 579–82

    Article  PubMed  CAS  Google Scholar 

  31. Maertens JA, Madero L, Reilly AF, et al. (2010) A randomized, double-blind, multicenter study of caspofungin versus liposomal amphotericin B for empiric antifungal therapy in pédiatric patients with persistent fever and neutropenia. Pediatr Infect Dis J 29: 415–20

    Article  PubMed  Google Scholar 

  32. Kuse ER, Chetchotisakd P, da Cunha CA, et al. (2007) Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet 369: 1519–27

    Article  PubMed  CAS  Google Scholar 

  33. Comely OA, Maertens J, Bresnik M, et al. (2007) Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis 44: 1289–97

    Article  Google Scholar 

  34. Moen MD, Lyseng-Williamson KA, Scott LJ (2009) Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69: 361–92

    Article  PubMed  CAS  Google Scholar 

  35. Kuhn DM, George T, Chandra J, et al. (2002) Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46: 1773–80

    Article  PubMed  CAS  Google Scholar 

  36. Pasqualotto AC, Howard SJ, Moore CB, Denning DW (2007) Flucytosine therapeutic monitoring: 15 years experience from the UK. J Antimicrob Chemother 59: 791–3

    Article  PubMed  CAS  Google Scholar 

  37. Pound MW, Townsend ML, Drew RH (2010) Echinocandin pharmacodynamics: review and clinical implications. J Antimicrob Chemother 65: 1108–18

    Article  PubMed  CAS  Google Scholar 

  38. Andes DR, Safdar N, Baddley JW, et al. (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54: 1110–22

    Article  PubMed  CAS  Google Scholar 

  39. Kofla G, Ruhnke M (2011) Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur J Med Res 16: 159–66

    Article  PubMed  CAS  Google Scholar 

  40. Nguyen TH, Hoppe-Tichy T, Geiss HK, et al. (2007) Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother 60: 100–6

    Article  PubMed  CAS  Google Scholar 

  41. Hirata K, Aoyama T, Matsumoto Y, et al. (2007) Pharmacokinetics of antifungal agent micafungin in critically ill patients receiving continuous hemodialysis filtration. Yakugaku Zasshi 127: 897–901

    Article  PubMed  CAS  Google Scholar 

  42. Pfaller MA, Diekema DJ, Andes D, et al. (2011) Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 14: 164–76

    Article  PubMed  CAS  Google Scholar 

  43. Betts RF, Nucci M, Talwar D, et al. (2009) A Multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis 48: 1676–84

    Article  PubMed  CAS  Google Scholar 

  44. Nucci M, Anaissie E, Betts RF, et al. (2010) Early removal of central venous catheter in patients with candidemia does not improve outcome: analysis of 842 patients from 2 randomized clinical trials. Clin Infect Dis 51: 295–303

    Article  PubMed  Google Scholar 

  45. Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, et al. (2012) Candida spp. with acquired echinocandin resistance, France, 2004-2010. Emerg Infect Dis 18: 86–90

    Article  PubMed  CAS  Google Scholar 

  46. Lortholary O, Desnos-Ollivier M, Sitbon K, et al. (2011) Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother 55: 532–8

    Article  PubMed  CAS  Google Scholar 

  47. Hope WW, Drusano GL (2009) Antifungal pharmacokinetics and pharmacodynamics: bridging from the bench to bedside. Clin Microbiol Infect 15: 602–12

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Timsit .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Timsit, JF. et al. (2013). De la bonne utilisation des antifongiques systémiques en réanimation. In: Infectiologie en réanimation. Références en réanimation. Collection de la SRLF. Springer, Paris. https://doi.org/10.1007/978-2-8178-0389-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0389-0_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0388-3

  • Online ISBN: 978-2-8178-0389-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics