Skip to main content

Contribution of “Omics” Approaches to Understand the Pathophysiology of Obesity

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue
  • 2398 Accesses

Abstract

Molecular profiling is a promising approach for the discovery of novel biological pathways or associations with clinical or genetic traits that may provide novel potential targets for therapy. Moreover, it also supports the ability to stratify subjects for improved obese subjects’ treatment through personalized medicine and tailored treatments. This paper describes recent advances in obesity field based on transcriptomic or proteomic analyses in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Kumar C, Zhang Y et al (2007) In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 6:1257–1273

    Article  PubMed  CAS  Google Scholar 

  • Akerblad P, Mansson R, Lagergren A et al (2005) Gene expression analysis suggests that EBF-1 and PPARgamma2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics. Physiol Genomics 23:206–216

    Article  PubMed  Google Scholar 

  • Alvarez-Llamas G, Szalowska E, de Vries MP et al (2007) Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics 6:589–600

    Article  PubMed  CAS  Google Scholar 

  • Aoki N, Jin-no S, Nakagawa Y et al (2007) Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 148:3850–3862

    Article  PubMed  CAS  Google Scholar 

  • Auffray C, Caulfield T, Khoury MJ et al (2011) Genome medicine: past, present and future. Genome Med 4:9

    Article  Google Scholar 

  • Birsoy K, Chen Z, Friedman J (2008) Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7:339–347

    Article  PubMed  CAS  Google Scholar 

  • Cancello R, Henegar C, Viguerie N et al (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Capel F, Viguerie N, Vega N et al (2008) Contribution of energy restriction and macronutrient composition to changes in adipose tissue gene expression during dietary weight-loss programs in obese women. J Clin Endocrinol Metab 93:4315–4322

    Article  PubMed  CAS  Google Scholar 

  • Capel F, Klimcakova E, Viguerie N et al (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58:1558–1567

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, Moreira JM, Cabezon T et al (2005) Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 4:492–522

    Article  PubMed  CAS  Google Scholar 

  • Cheung KJ, Tzameli I, Pissios P et al (2007) Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 5:115–128

    Article  PubMed  CAS  Google Scholar 

  • Christian M, Kiskinis E, Debevec D et al (2005) RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 25:9383–9391

    Article  PubMed  CAS  Google Scholar 

  • Clement K, Viguerie N, Poitou C et al (2004) Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 18:1657–1669

    Article  PubMed  CAS  Google Scholar 

  • Curry SH (2008) Translational science: past, present, and future. Biotechniques 44: ii–viii

    Google Scholar 

  • Dahlman I, Linder K, Arvidsson Nordstrom E (2005) Changes in adipose tissue gene expression with energy-restricted diets in obese women. Am J Clin Nutr 81:1275–1285

    PubMed  CAS  Google Scholar 

  • Deng ZB, Poliakov A, Hardy RW et al (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58:2498–2505

    Article  PubMed  CAS  Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428

    Article  PubMed  CAS  Google Scholar 

  • Gesta S, Bluher M, Yamamoto Y et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103:6676–6681

    Article  PubMed  CAS  Google Scholar 

  • Hackl H, Burkard TR, Sturn A et al (2005) Molecular processes during fat cell development revealed by gene expression profiling and functional annotation. Genome Biol 6:R108

    Article  PubMed  Google Scholar 

  • Henegar C, Tordjman J, Achard V et al (2008) Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol 9:R14

    Article  PubMed  Google Scholar 

  • Hocking SL, Wu LE, Guilhaus M et al (2011) Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes 59:3008–3016

    Article  Google Scholar 

  • Jeong JA, Ko KM, Park HS et al (2007) Membrane proteomic analysis of human mesenchymal stromal cells during adipogenesis. Proteomics 7:4181–4191

    Article  PubMed  CAS  Google Scholar 

  • Keophiphath M, Achard V, Henegar C et al (2009) Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 23:11–24

    Article  PubMed  CAS  Google Scholar 

  • Klimcakova E, Roussel B, Marquez-Quinones A et al (2010) Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J Clin Endocrinol Metab 96:E73–E82

    Article  PubMed  Google Scholar 

  • Lamers D, Famulla S, Wronkowitz N et al (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925

    Article  PubMed  CAS  Google Scholar 

  • Lehr S, Hartwig S, Lamers D et al (2011) Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 11(1):M111.010504. Epub 2011 Sep 26

    Google Scholar 

  • Marquez-Quinones A, Mutch DM, Debard C et al (2010) Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake. Am J Clin Nutr 92:975–984

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Sakaue H, Iguchi H et al (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280:12867–12875

    Article  PubMed  CAS  Google Scholar 

  • Mutch DM, Rouault C, Keophiphath M et al (2009a) Using gene expression to predict the secretome of differentiating human preadipocytes. Int J Obes (Lond) (2005) 33:354–363

    Article  CAS  Google Scholar 

  • Mutch DM, Fuhrmann JC, Rein D et al (2009b) Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS One 4:e7905

    Article  PubMed  Google Scholar 

  • Mutch DM, Pers TH, Temanni MR et al (2011) A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects. Am J Clin Nutr 94:1399–1409

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Lee YH, Rousseau E et al (2005) Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia 48:1784–1788

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N, Nakagawa Y, Tokushige N et al (2009) The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun 385:492–496

    Article  PubMed  CAS  Google Scholar 

  • O’Hara A, Lim FL, Mazzatti DJ et al (2009) Microarray analysis identifies matrix metalloproteinases (MMPs) as key genes whose expression is up-regulated in human adipocytes by macrophage-conditioned medium. Pflugers Arch 458:1103–1114

    Article  PubMed  Google Scholar 

  • Rahman A, Kumar SG, Kim SW et al (2008) Proteomic analysis for inhibitory effect of chitosan oligosaccharides on 3T3-L1 adipocyte differentiation. Proteomics 8:569–581

    Article  PubMed  CAS  Google Scholar 

  • Ross SE, Erickson RL, Gerin I et al (2002) Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol 22:5989–5999

    Article  PubMed  CAS  Google Scholar 

  • Scheideler M, Elabd C, Zaragosi LE et al (2008) Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics 9:340

    Article  PubMed  Google Scholar 

  • Soukas A, Socci ND, Saatkamp BD et al (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 276:34167–34174

    Article  PubMed  CAS  Google Scholar 

  • Suhre K, Meisinger C, Doring A et al (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5:e13953

    Article  PubMed  Google Scholar 

  • Sun T, Fu M, Bookout AL et al (2009) MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 23:925–931

    Article  PubMed  CAS  Google Scholar 

  • Takamura T, Honda M, Sakai Y et al (2007) Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes. Biochem Biophys Res Comm 361:379–384

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Mariman E, Keijer J et al (2004) Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell Mol Life Sci 61:2405–2417

    PubMed  CAS  Google Scholar 

  • Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  Google Scholar 

  • Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  • Xu A, Wang Y, Xu JY et al (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52:405–413

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Graham TE, Mody N et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  PubMed  CAS  Google Scholar 

  • Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  PubMed  CAS  Google Scholar 

  • Zeyda M, Gollinger K, Kriehuber E et al (2010) Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int J Obes (Lond) 34:1684–1694

    Article  CAS  Google Scholar 

  • Zhong J, Krawczyk SA, Chaerkady R et al (2010) Temporal profiling of the secretome during adipogenesis in humans. J Proteome Res 9:5228–5238

    Article  PubMed  CAS  Google Scholar 

  • Zvonic S, Lefevre M, Kilroy G et al (2007) Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 6:18–28

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Viguerie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Viguerie, N. (2013). Contribution of “Omics” Approaches to Understand the Pathophysiology of Obesity. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_19

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics