Skip to main content

Animal Models of Obesity

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue

Abstract

This chapter reviews rodent models of obesity and how they provide crucial insight into our understanding of physiological, environmental, genetic, and epigenetic bases of human obesity. Naturally occurring or genetically modified animal models represent precious and necessary tools to explore the complexity of energy balance regulation and to test innovative therapeutic intervention in obesity, of which leptin treatment for leptin-deficient patients is a striking example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainge H, Thompson C, Ozanne SE et al (2011) A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int J Obes (Lond) 35:325–335

    Article  CAS  Google Scholar 

  • Barsh GS, Ollmann MM, Wilson BD et al (1999) Molecular pharmacology of Agouti protein in vitro and in vivo. Ann N Y Acad Sci 885:143–152

    Article  PubMed  CAS  Google Scholar 

  • Boullu-Ciocca S, Achard V, Tassistro V et al (2008) Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity and adiponectin and proinflammatory adipokines gene expression in adulthood. Diabetes 57:669–677

    Article  PubMed  CAS  Google Scholar 

  • Brockmann GA, Bevova MR (2002) Using mouse models to dissect the genetics of obesity. Trends Genet 18:367–376

    Article  PubMed  CAS  Google Scholar 

  • Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 71:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Burcelin R, Crivelli V, Dacosta A et al (2002) Heterogeneous metabolic adaptation of C57BL/6 J mice to high-fat diet. Am J Physiol Endocrinol Metab 282:E834–E842

    PubMed  CAS  Google Scholar 

  • Campfield LA, Smith FJ, Guisez Y et al (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    Article  PubMed  CAS  Google Scholar 

  • Cani PD, Delzenne NM, Amar J et al (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol (Paris) 56:305–309

    Article  CAS  Google Scholar 

  • Carroll K, Gomez C, Shapiro L (2004) Tubby proteins: the plot thickens. Nat Rev Mol Cell Biol 5:55–63

    Article  PubMed  CAS  Google Scholar 

  • Cawley NX, Yanik T, Woronowicz A et al (2010) Obese carboxypeptidase E knockout mice exhibit multiple defects in peptide hormone processing contributing to low bone mineral density. Am J Physiol Endocrinol Metab 299:E189–E197

    PubMed  CAS  Google Scholar 

  • Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Airey DC, Allayee H et al (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Clement K (2006) Genetics of human obesity. C R Biol 329:608–622

    Article  PubMed  CAS  Google Scholar 

  • Coleman DL (2010) A historical perspective on leptin. Nat Med 16:1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Czupryn A, Zhou YD, Chen X et al (2011) Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Chi MM, Scull BP et al (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 5:e12191

    Article  PubMed  Google Scholar 

  • Dow LE, Lowe SW (2012) Life in the fast lane: mammalian disease models in the genomics era. Cell 148:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Farooqi IS, Jebb SA, Langmack G et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884

    Article  PubMed  CAS  Google Scholar 

  • Fearnside JF, Dumas ME, Rothwell AR et al (2008) Phylometabonomic patterns of adaptation to high fat diet feeding in inbred mice. PLoS ONE 3:e1668

    Article  PubMed  Google Scholar 

  • Gilbert M, Magnan C, Turban S et al (2003) Leptin receptor-deficient obese Zucker rats reduce their food intake in response to a systemic supply of calories from glucose. Diabetes 52:277–282

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Jen KL (1995) High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 57:681–686

    Article  PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  PubMed  CAS  Google Scholar 

  • Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23:270–299

    Article  PubMed  CAS  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  PubMed  CAS  Google Scholar 

  • Justice MJ (2000) Capitalizing on large-scale mouse mutagenesis screens. Nat Rev Genet 1:109–115

    Article  PubMed  CAS  Google Scholar 

  • King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87:221–244

    Article  PubMed  CAS  Google Scholar 

  • Klebig ML, Wilkinson JE, Geisler JG et al (1995) Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur. Proc Natl Acad Sci U S A 92:4728–4732

    Article  PubMed  CAS  Google Scholar 

  • Kleyn PW, Fan W, Kovats SG et al (1996) Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 85:281–290

    Article  PubMed  CAS  Google Scholar 

  • Kosteli A, Sugaru E, Haemmerle G et al (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479

    Article  PubMed  CAS  Google Scholar 

  • Lee GH, Proenca R, Montez JM et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Li C, Montez J et al (1997) Leptin receptor mutations in 129 db3 J/db3 J mice and NIH facp/facp rats. Mamm Genome 8:445–447

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz KL, Chang GQ, Pamy PS et al (2007) Weight gain model in prepubertal rats: prediction and phenotyping of obesity-prone animals at normal body weight. Int J Obes (Lond) 31:1210–1221

    Article  CAS  Google Scholar 

  • Levin BE, Dunn-Meynell AA (2000) Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am J Physiol Regul Integr Comp Physiol 278:R231–R237

    PubMed  CAS  Google Scholar 

  • Levin BE, Dunn-Meynell AA, Banks WA (2004) Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol 286:R143–R150

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ioffe E, Fidahusein N et al (1998) Absence of soluble leptin receptor in plasma from dbPas/dbPas and other db/db mice. J Biol Chem 273:10078–10082

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Vikis H, Lu Y et al (2007) Large-scale in silico mapping of complex quantitative traits in inbred mice. PLoS ONE 2:e651

    Article  PubMed  Google Scholar 

  • Madsen AN, Hansen G, Paulsen SJ et al (2010) Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome. J Endocrinol 206:287–296

    Article  PubMed  CAS  Google Scholar 

  • Marshall NB, Barrnett RJ, Mayer J (1955) Hypothalamic lesions in goldthioglucose injected mice. Proc Soc Exp Biol Med 90:240–244

    PubMed  CAS  Google Scholar 

  • Michaud EJ, Bultman SJ, Klebig ML et al (1994) A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc Natl Acad Sci U S A 91:2562–2566

    Article  PubMed  CAS  Google Scholar 

  • Miller MW, Duhl DM, Vrieling H et al (1993) Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 7:454–467

    Article  PubMed  CAS  Google Scholar 

  • Moon BC, Friedman JM (1997) The molecular basis of the obese mutation in ob2 J mice. Genomics 42:152–156

    Article  PubMed  CAS  Google Scholar 

  • Moussa NM, Claycombe KJ (1999) The yellow mouse obesity syndrome and mechanisms of agouti-induced obesity. Obes Res 7:506–514

    PubMed  CAS  Google Scholar 

  • Naggert JK, Fricker LD, Varlamov O et al (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142

    Article  PubMed  CAS  Google Scholar 

  • Noben-Trauth K, Naggert JK, North MA et al (1996) A candidate gene for the mouse mutation tubby. Nature 380:534–538

    Article  PubMed  CAS  Google Scholar 

  • Ozcan L, Ergin AS, Lu A et al (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9:35–51

    Article  PubMed  CAS  Google Scholar 

  • Patterson CM, Bouret SG, Park S et al (2010) Large litter rearing enhances leptin sensitivity and protects selectively bred diet-induced obese rats from becoming obese. Endocrinology 151:4270–4279

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  • Perry WL, Hustad CM, Swing DA et al (1995) A transgenic mouse assay for agouti protein activity. Genetics 140:267–274

    PubMed  CAS  Google Scholar 

  • Phillips MS, Liu Q, Hammond HA et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19

    Article  PubMed  CAS  Google Scholar 

  • Pinkney J, Wilding J, Williams G et al (2002) Hypothalamic obesity in humans: what do we know and what can be done? Obes Rev 3:27–34

    Article  PubMed  CAS  Google Scholar 

  • Plum L, Lin HV, Dutia R et al (2009) The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med 15:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Pomp D, Nehrenberg D, Estrada-Smith D (2008) Complex genetics of obesity in mouse models. Annu Rev Nutr 28:331–345

    Article  PubMed  CAS  Google Scholar 

  • Rankinen T, Zuberi A, Chagnon YC et al (2006) The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14:529–644

    Article  Google Scholar 

  • Scarpace PJ, Zhang Y (2009) Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 296:R493–R500

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  PubMed  CAS  Google Scholar 

  • Simler N, Grosfeld A, Peinnequin A et al (2006) Leptin receptor-deficient obese Zucker rats reduce their food intake in response to hypobaric hypoxia. Am J Physiol Endocrinol Metab 290:E591–E597

    Article  PubMed  CAS  Google Scholar 

  • Stubdal H, Lynch CA, Moriarty A et al (2000) Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation. Mol Cell Biol 20:878–882

    Article  PubMed  CAS  Google Scholar 

  • Surwit RS, Feinglos MN, Rodin J et al (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6 J and A/J mice. Metabolism 44:645–651

    Article  PubMed  CAS  Google Scholar 

  • Takaya K, Ogawa Y, Hiraoka J et al (1996) Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14:130–131

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Troy S, Soty M, Ribeiro L et al (2008) Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 8:201–211

    Article  PubMed  CAS  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Guerre-Millo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Guerre-Millo, M. (2013). Animal Models of Obesity. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_18

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics