Skip to main content

Les «ADE Scorecards»: Un outil de détection par data mining des effets indésirables liés aux médicaments dans les dossiers médicaux (projet PSIP)

  • Chapter
Systèmes d’information pour l’amélioration de la qualité en santé

Part of the book series: Informatique et Santé ((INFORMATIQUE,volume 1))

  • 573 Accesses

Abstract

The automated detection of Adverse Drug Events (ADE) is an important issue in medical informatics. The objective of this work is to automatically detect ADEs and to present the results to physicians. 90,000 stays are extracted from the EHR of 5 French and Danish hospitals and loaded into a common repository, using a common data model. Then data mining procedures such as decision trees are used in order to get ADE detection rules that are filtered and validated by an expert committee. The procedure enables to produce 236 ADE detection rules that are able to detect 27 different kinds of outcomes. Contextualized statistics are computed for every rule in every medical department separately. The physicians of the medical departments are provided with that information by means of a web-based tool named “ADE Scorecards”. The tool is presented in the article through a use case and several screenshots. Based on a list of rules and a repository of stays, it allows for displaying the important rules, the related statistics, and the complete information about the suspicious cases. The knowledge is contextualized, i.e. it depends on the medical department. The tool is deployed in a French hospital and is currently being evaluated through a prospective impact assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Kohn LT, Corrigan JM, Donaldson MS. To Err Is Human: Building a Safer Health System. Washington, DC: National Academy Press; 1999; 287 p

    Google Scholar 

  2. Morimoto T, Gandhi TK, Seger AC, Hsieh TC, Bates DW. Adverse drug events and medication errors: detection and classification methods. Qual Saf Health Care. 2004; 13(4): 306–14

    Article  Google Scholar 

  3. Murff HJ, Patel VL, Hripcsak G, Bates DW. Detecting adverse events for patient safety research: a review of current methodologies. J Biomed Inform 2003; 36(1–2): 131–43

    Article  Google Scholar 

  4. Aramaki E, Miura Y, Tonoike M, Ohkuma T, Masuichi H, Waki K, Ohe K. Extraction of adverse drug effects from clinical records. Stud Health Technol Inform. 2010; 160: 739–43

    Google Scholar 

  5. Almenoff J, Tonning JM, Gould AL, Szarfman A, Hauben M, Ouellet-Hellstrom R et al. Perspectives on the use of data mining in pharmaco-vigilance. Drug Saf. 2005; 28: 981–1007

    Article  Google Scholar 

  6. Bate A, Edwards IR. Data mining in spontaneous reports. Basic Clin Pharmacol Toxicol. 2006; 98(3): 324–30

    Article  Google Scholar 

  7. Chazard E, Ficheur G, Merlin B, Serrot E, PSIP Consortium, Beuscart R. Adverse drug events prevention rules: multi-site evaluation of rules from various sources. Stud Health Technol Inform. 2009; 148: 102–11

    Google Scholar 

  8. Pereira S, Sakji S, Névéol A, Kergourlay I, Kerdelhué G, Serrot E, Joubert M, Darmoni SJ. Multi-terminology indexing for the assignment of MeSH descriptors to medical abstracts in French. AMIA Annu Symp Proc. 2009; 521–5

    Google Scholar 

  9. Date CJ. Database in Depth: Relational Theory for Practitioners. O’Reilly. 2005

    Google Scholar 

  10. Chazard E, Merlin B, Ficheur G, Sarfati JC, PSIP Consortium, Beuscart R. Detection of adverse drug events: proposal of a data model. Stud Health Technol Inform. 2009; 148: 63–74

    Google Scholar 

  11. Breiman L. Classification and regression trees. Belmont, Calif.: Wadsworth International Group; 1984

    MATH  Google Scholar 

  12. Zhang HP, Crowley J, Sox H, Olshen RA. Tree structural statistical methods. In: Encyclopedia of Biostatistics. Chichester, England: Wiley; 2001; 4561–73

    Google Scholar 

  13. Therneau TM, Atkinson B, Ripley BD. Rpart: Recursive Partitioning. Disponible sur 〈http://CRAN.R-project.org/package=rpart〉 (Consulté le 26.12.2010)

    Google Scholar 

  14. Agrawal R, Imielinski T, Swami A, editors. Mining Association Rules between Sets of Items in Large Databases. Proceedings of the ACM SIGMOD International Conference on Management of Data; 1993 May. Washington DC

    Google Scholar 

  15. Bates DW, O’Neil AC, Boyle D, Teich J, Chertow GM, Komaroff AL, Brennan TA. Potential identifiability and preventability of adverse events using information systems. JAMIA 1994; 1(5): 404–11

    Google Scholar 

  16. Jha AK, Kuperman GJ, Teich JM, Leape L, Shea B, Rittenberg E, Burdick E, Seger DL, Vander Vliet M, Bates DW. Identifying adverse drug events: development of a computer-based monitor and comparison with chart review and stimulated voluntary report. JAMIA 1998; 5(3): 305–14

    Google Scholar 

  17. Kuperman GJ, Teich JM, Bates DW, Hiltz FL, Hurley JM, Lee RY, Paterno MD. Detecting alerts, notifying the physician, and offering action items: a comprehensive alerting system. Proc AMIA Annu Fall Symp 1996; 704–8

    Google Scholar 

  18. Del Fiol G, Rocha BH, Kuperman GJ, Bates DW, Nohama P. Comparison of two knowledge bases on the detection of drug-drug interactions. Proc AMIA Symp. 2000; 171–5

    Google Scholar 

  19. Gandhi TK, Weingart SN, Seger AC, Borus J, Burdick E, Poon EG, Leape LL, Bates DW. Outpatient prescribing errors and the impact of computerized prescribing. J Gen Intern Med 2005; 20(9): 837–41

    Article  Google Scholar 

  20. Judge J, Field TS, DeFlorio M, Laprino J, Auger J, Rochon P, Bates DW, Gurwitz JH. Prescribers’ responses to alerts during medication ordering in the long term care setting. J Am Med Inform Assoc 2006; 13(4): 385–90

    Article  Google Scholar 

  21. Paterno MD, Maviglia SM, Gorman PN, Seger DL, Yoshida E, Seger AC, Bates DW, Gandhi TK. Tiering drug-drug interaction alerts by severity increases compliance rates. JAMIA 2009; 16(1): 40–6

    Google Scholar 

  22. Schedlbauer A, Prasad V, Mulvaney C, Phansalkar S, Stanton W, Bates DW, Avery AJ. What evidence supports the use of computerized alerts and prompts to improve clinicians’ prescribing behavior? JAMIA 2009; 16(4): 531-8

    Google Scholar 

  23. Teich JM, Glaser JP, Beckley RF, Aranow M, Bates DW, Kuperman GJ, Ward ME, Spurr CD. The Brigham integrated computing system (BICS): advanced clinical systems in an academic hospital environment. Int J Med Inform 1999; 54(3): 197–208

    Article  Google Scholar 

  24. Honigman B, Lee J, Rothschild J, Light P, Pulling RM, Yu T, Bates DW. Using computerized data to identify adverse drug events in outpatients. JAMIA 2001; 8(3): 254–66

    Google Scholar 

  25. Field TS, Gurwitz JH, Harrold LR, Rothschild JM, Debellis K, Seger AC, Fish LS, Garber L, Kelleher M, Bates DW. Strategies for detecting adverse drug events among older persons in the ambulatory setting. J Am Med Inform Assoc 2004; 11(6): 492–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Chazard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Chazard, E., Baceanu, A., Ficheur, G., Marcilly, R., Beuscart, R. (2011). Les «ADE Scorecards»: Un outil de détection par data mining des effets indésirables liés aux médicaments dans les dossiers médicaux (projet PSIP). In: Staccini, P.M., Harmel, A., Darmoni, S.J., Gouider, R. (eds) Systèmes d’information pour l’amélioration de la qualité en santé. Informatique et Santé, vol 1. Springer, Paris. https://doi.org/10.1007/978-2-8178-0285-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0285-5_16

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0284-8

  • Online ISBN: 978-2-8178-0285-5

Publish with us

Policies and ethics