Skip to main content

Dialogue ovocyte-cumulus: concept et applications cliniques

  • Chapter
  • 908 Accesses

Résumé

Plus de trente ans aprèrs la naissance de Louise Brown, les techniques d’assistance médicale à la procréation (AMP) telles que la fécondation in vitro (FIV) ou plus récemment l’injection d’un spermatozoïde dans l’ovocyte (ICSI) sont de plus en plus proposées à des couples ayant des difficultés à concevoir spontanément. Des problèmes majeurs émergent de ces techniques: le taux élevé de grossesses multiples et un faible taux de succès en termes d’enfant né par cycle initié. Cela explique en partie le replacement de plusieurs embryons dans la cavité utérine. Actuellement, la diminution du nombre d’embryons à transférer est devenue un impératif, voire une obligation réglementaire dans certains pays.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Salustri, A (2000) Paracrine actions of oocytes in the mouse pre-ovulatory follicle. Int J Dev Biol 44:591–597

    PubMed  CAS  Google Scholar 

  2. Gilchrist RB, Lane M, Thompson JG (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:159–177

    Article  PubMed  CAS  Google Scholar 

  3. Suzuki H, Jeong BS, Yang X (2000) Dynamic changes of cumulus-oocyte cell communication during in vitro maturation of porcine oocytes. Biol Reprod 63:723–729

    Article  PubMed  CAS  Google Scholar 

  4. Talbot P, Riveles K (2005). Smoking and reproduction: the oviduct as a target of cigarette smoke. Reprod Biol Endocrinol 3:52

    Article  PubMed  Google Scholar 

  5. Van Soom A, Tanghe S, De Pauw I et al. (2002) Function of the cumulus oophorus before and during mammalian fertilization. Reprod Dornest Anim 37:144–151

    Article  Google Scholar 

  6. Simon AM, Goodenough DA, Li E, Paul DL (1997). Female infertility in mice lacking connexin 37. Nature 385:525–529

    Article  PubMed  CAS  Google Scholar 

  7. Herlands RM, Schultz RM (1984). Regulation of mouse oocyte growth: probable nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth. J Exp Zool 229:317–325

    Article  PubMed  CAS  Google Scholar 

  8. Senbon S, Hirao Y, Miyano T (2003) Interactions between the oocyte and surrounding somatic cells in follicular development: lessons from in vitro culture. J Reprod Dev 49:259–269

    Article  PubMed  CAS  Google Scholar 

  9. Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK (2005) Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod 73:351–357

    Article  PubMed  CAS  Google Scholar 

  10. Sugiura K, Pendola FL, Eppig JJ (2005) Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 279:20–30

    Article  PubMed  CAS  Google Scholar 

  11. Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477

    Article  PubMed  CAS  Google Scholar 

  12. Gilchrist RB, Ritter LJ, Armstrong DT (2004) Oocytesomatic cell interactions during follicle development in mammals. Anim Reprod Sci 82–83:431–446

    Article  PubMed  Google Scholar 

  13. Galloway SM, McNatty KP, Cambridge LM et al. (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25:279–283

    Article  PubMed  CAS  Google Scholar 

  14. Assou S, Anahory T, Pantesco V et al. (2006) The human cumulus—oocyte complex gene-expression profile. Hum Reprod 21:1705–1719

    Article  PubMed  CAS  Google Scholar 

  15. Assou S, Haouzi D, Mahmoud K et al. (2008). A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells. Mol Hum Reprod 12:711–719

    Article  Google Scholar 

  16. Di Pasquale E, Beck-Peccoz P, Persani L (2004) Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 75:106–111

    Article  PubMed  Google Scholar 

  17. Hussein TS, Froiland DA, Amato F et al. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 118:5257–5268

    Article  PubMed  CAS  Google Scholar 

  18. Gasca S, Pellestor F, Assou S et al. (2007) Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online 14:175–183

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi T, Morrow JD, Wang H, Dey SK (2006) Cyclooxygenase-2-derived prostaglandin E (2) directs oocyte maturation by differentially influencing multiple signaling pathways. J Biol Chem 281:37117–37129

    Article  PubMed  CAS  Google Scholar 

  20. McKenzie LJ, Pangas SA, Carson SA et al. (2004) Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod 19:2869–2874

    Article  PubMed  CAS  Google Scholar 

  21. Society for Assisted Reproductive Technology, American Society for Reproductive Medicine (2004) Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril 81:1207–1220

    Article  Google Scholar 

  22. Kovalevsky G, Patrizio P (2005) High rates of embryo wastage with use of assisted reproductive technology: a look at the trends between 1995 and 2001 in the United States. Fertil Steril 84:325–330

    Article  PubMed  Google Scholar 

  23. Scott L, Alvero R, Leondires M, Miller B (2000) The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod 15:2394–2403

    Article  PubMed  CAS  Google Scholar 

  24. Balaban B, Urman B (2006) Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online 12:608–605

    Article  PubMed  Google Scholar 

  25. La Sala GB, Nicoli A, Villani MT et al. (2009) The effect of selecting oocytes for insemination and transferring all resultant embryos without selection on outcomes of assisted reproduction. Fertil Steril 91:96–100

    Article  PubMed  Google Scholar 

  26. Fenwick J, Platteau P, Murdoch AP, Herbert M (2002) Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum Reprod 17:407–412

    Article  PubMed  CAS  Google Scholar 

  27. Reddy UM, Wapner RJ, Rebar RW, Tasca RJ (2007) Infertility, assisted reproductive technology, and adverse pregnancy outcomes: executive summary of a National Institute of Child Health and Human Dvelopment workshop. Obstet Gynecol 109:967–977

    Article  PubMed  Google Scholar 

  28. Bromer JG, Seli E (2008) Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr Opin Obstet Gynecol 20:234–241

    Article  PubMed  Google Scholar 

  29. Pearson H (2006) Safer embryo tests could boost IVF pregnancy rates. Nature 444:12–13

    Article  PubMed  CAS  Google Scholar 

  30. Haouzi D, De Vos J, Loup V et al. (2008) Oocyte and embryo quality: do the apoptotic markers have a place in the preimplantation genetic diagnostic? Gynecol Obstet Fertil 36:730–742

    Article  PubMed  CAS  Google Scholar 

  31. Gardner DK, Lane M, Stevens J, Schoolcraft WB (2001) Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril 76:1175–1180

    Article  PubMed  CAS  Google Scholar 

  32. Brison DR, Houghton FD, Falconer D et al. (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19:2319–2324

    Article  PubMed  CAS  Google Scholar 

  33. Sakkas D, Gardner DK (2005) Noninvasive methods to assess embryo quality. Curr Opin Obstet Gynecol 17:283–288

    Article  PubMed  Google Scholar 

  34. Seli E, Sakkas D, Scott R et al. (2007) Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 88:1350–1357

    Article  PubMed  Google Scholar 

  35. Zhu XM, Zhu YM, Xu CM et al. (2008) Autologous mature follicular fluid: its role in in vitro maturation of human cumulus-removed oocytes. Fertil Steril 90:1094–1102

    Article  PubMed  Google Scholar 

  36. Feuerstein P, Cadoret V, Dalbies-Tran R et al. (2007) Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod 22:3069–3077

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X, Jafari N, Barnes RB et al. (2005) Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril 83(Suppl. 1):1169–1179

    Article  PubMed  CAS  Google Scholar 

  38. Van Montfoort AP, Geraedts JP, Dumoulin JC et al. (2008) Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol Hum Reprod 14:157–168

    Article  PubMed  Google Scholar 

  39. Lundin K, Bergh C, Hardarson T (2001) Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod 16:2652–2657

    Article  PubMed  CAS  Google Scholar 

  40. Van Montfoort AP, Dumoulin JC, Rester AD, Evers JL (2004) Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod 19:2103–2108

    Article  PubMed  Google Scholar 

  41. Yang WJ, Hwu YM, Lee RK et al. (2007) Early cleavage does not predict treatment outcome following the use of GnRH antagonists in women older than 35. Fertil Steril 88:1573–1578

    Article  PubMed  Google Scholar 

  42. Hamel M, Dufort I, Robert C et al. (2008) Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod 23:1118–1127

    Article  PubMed  CAS  Google Scholar 

  43. Haouzi D, Hamamah S (2009) Pertinence of Apoptosis Markers for the Improvement of In Vitro Fertilization (IVF). Curr Med Chem 16:1905–1916

    Article  PubMed  CAS  Google Scholar 

  44. Lee KS, Joo BS, Na YJ et al. (2001) Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Assist Reprod Genet 18:490–498

    Article  PubMed  CAS  Google Scholar 

  45. Sugiura K, Su YQ, Diaz FJ et al. (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134:2593–2603

    Article  PubMed  CAS  Google Scholar 

  46. Su YQ, Sugiura K, Wigglesworth K et al. (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121

    Article  PubMed  CAS  Google Scholar 

  47. Steele-Perkins G, Plachez C, Butz KG et al. (2005) The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25:685–698

    Article  PubMed  CAS  Google Scholar 

  48. Courtois G, Smahi A (2006) NF-kappaB-related genetic diseases. Cell Death Differ 13:843–851

    Article  PubMed  CAS  Google Scholar 

  49. Stein JV, Lopez-Fraga M, Elustondo FA et al. (2002) APRIL modulates B and T cell immunity. J Clin Invest 109:1587–1598

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Hamamah, S., Schabo, V., Assou, S., Anahory, T., Dechaud, H., de Vos, J. (2011). Dialogue ovocyte-cumulus: concept et applications cliniques. In: Physiologie, pathologie et thérapie de la reproduction chez l’humain. Springer, Paris. https://doi.org/10.1007/978-2-8178-0061-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0061-5_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0060-8

  • Online ISBN: 978-2-8178-0061-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics