Skip to main content

Antiépileptiques et antihyperalgésie péri-opératoire: état des lieux

  • Chapter
La douleur chronique post-chirurgicale
  • 712 Accesses

Résumé

Le rationnel pour l’utilisation d’antiépileptiques (AE) dans une stratégie d’analgésie multimodale péri-opératoire est basé sur un double constat, à la fois empirique et théorique. L’abord chirurgical provoque des lésions tissulaires et nerveuses qui conduisent à des manifestations d’hyperalgésie primaire au site lésionnel et secondaire en périphérie de celui-ci. Ces lésions sont ainsi à l’origine d’une hyperexcitabilité neuronale, en particulier au niveau de la corne dorsale de la moelle, phénomène communément appelé sensibilisation. Deux hypothèses ont été émises : 1) l’hyperexcitabilité neuronale médullaire impliquée dans les phénomènes d’hyperalgésie est liée pour une part à la transmission de l’information nociceptive au travers de synapses dont l’activité dépend de l’ouverture de canaux calciques voltage-dépendants, et pourrait donc être réduite par des AE susceptibles de bloquer ces canaux ; 2) des lésions nerveuses étant induites par la chirurgie, certains AE étant des traitements des douleurs neuropathiques, leur utilisation pourrait prévenir l’apparition de douleurs post-opératoires chroniques. Tous les AE n’ont pas été, à ce jour, utilisés dans les stratégies d’analgésie multimodale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Rose MA, Kam PC (2002) Gabapentin: pharmacology and its use in pain management. Anaesthesia 57: 451–62

    PubMed  CAS  Google Scholar 

  2. McLean MJ (1999) Gabapentin in the management of convulsive disorders. Epilepsia 40 (Suppl 6): S39–50; discussion S73-4

    PubMed  CAS  Google Scholar 

  3. McLean MJ, Gidal BE (2003) Gabapentin dosing in the treatment of epilepsy. Clin Ther 25: 1382–406

    PubMed  CAS  Google Scholar 

  4. Rosner H, Rubin L, Kestenbaum A (1996) Gabapentin adjunctive therapy in neuropathic pain states. Clin J Pain 12: 56–8

    PubMed  CAS  Google Scholar 

  5. Backonja M, Beydoun A, Edwards KR et al. (1998) Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280: 1831–6

    PubMed  CAS  Google Scholar 

  6. Vinik A (2005) Clinical review: Use of antiepileptic drugs in the treatment of chronic painful diabetic neuropathy. J Clin Endocrinol Metab 90: 4936–45

    PubMed  CAS  Google Scholar 

  7. Rice AS, Maton S (2001) Gabapentin in postherpetic neuralgia: a randomized, double blind, placebo controlled study. Pain 94: 215–24

    PubMed  CAS  Google Scholar 

  8. Caraceni A, Zecca E, Martini C, De Conno F (1999) Gabapentin as an adjuvant to opioid analgesia for neuropathic cancer pain. J Pain Symptom Manage 17: 441–5

    PubMed  CAS  Google Scholar 

  9. Seib RK, Paul JE (2006) Preoperative gabapentin for postoperative analgesia: a meta-analysis. Can J Anaesth 53: 461–9

    PubMed  Google Scholar 

  10. Gilron I, Bailey JM, Tu D et al. (2005) Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 352: 1324–34

    PubMed  CAS  Google Scholar 

  11. Kehlet H (2006) Perioperative analgesia to prevent chronic postmastectomy pain. Anesth Analg 103: 494; author reply-5

    PubMed  Google Scholar 

  12. Vollmer KO, Türck D, Wagner F, et al. (1989) Multiple-dose pharmacokinetics of the new anticonvulsivant gabapentin. Eur J Pharmacol 36: A310

    Google Scholar 

  13. Türck D, Vollmer KO, Bockbrader H, Sedman AJ (1989) Dose-linearity of the new anticonvulsivant gabapentin after multiple oral doses. Eur J Clin Pharmacol 36: A310

    Google Scholar 

  14. Beydoun A, Uthman BM, Sackellares JC (1995) Gabapentin: pharmacokinetics, efficacy, and safety. Clin Neuropharmacol 18: 469–81

    PubMed  CAS  Google Scholar 

  15. Stewart BH, Kugler AR, Thompson PR, Bockbrader HN (1993) A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res 10: 276–81

    PubMed  CAS  Google Scholar 

  16. Randinitis EJ, Posvar EL, Alvey CW et al. (2003) Pharmacokinetics of pregabalin in subjects with various degrees of renal function. J Clin Pharmacol 43: 277–83

    PubMed  CAS  Google Scholar 

  17. Ben-Menachem E, Soderfelt B, Hamberger A et al. (1995) Seizure frequency and CSF parameters in a double-blind placebo controlled trial of gabapentin in patients with intractable complex partial seizures. Epilepsy Res 21: 231–6

    PubMed  CAS  Google Scholar 

  18. Ojemann LM, Friel PN, Ojemann GA (1988) Gabapentin concentrations in human brain. Epilepsia 29: 694

    Google Scholar 

  19. Vollmer KO, von Hodenberg A, Kolle EU (1986) Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneimittelforschung 36: 830–9

    PubMed  CAS  Google Scholar 

  20. Tomson T (2005) Gender aspects of pharmacokinetics of new and old AEDs: pregnancy and breast-feeding. Ther Drug Monit 27: 718–21

    PubMed  CAS  Google Scholar 

  21. McLean MJ (1995) Gabapentin. Epilepsia 36 (Suppl 2): S73–86

    PubMed  CAS  Google Scholar 

  22. McLean MJ (1994) Clinical pharmacokinetics of gabapentin. Neurology 44: S17–22; discussion S31-2

    PubMed  CAS  Google Scholar 

  23. Perucca E (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61: 246–55

    PubMed  CAS  Google Scholar 

  24. Rorarius MG, Mennander S, Suominen P et al. (2004) Gabapentin for the prevention of postoperative pain after vaginal hysterectomy. Pain 110: 175–81

    PubMed  CAS  Google Scholar 

  25. Ho KY, Gan TJ, Habib AS (2006) Gabapentin and postoperative pain—a systematic review of randomized controlled trials. Pain 126: 91–101

    PubMed  CAS  Google Scholar 

  26. Tiippana EM, Hamunen K, Kontinen VK, Kalso E (2007) Do surgical patients benefit from perioperative gabapentin/pregabalin? A systematic review of efficacy and safety. Anesth Analg 104: 1545–56

    PubMed  CAS  Google Scholar 

  27. Carlton SM, Zhou S (1998) Attenuation of formalin-induced nociceptive behaviors following local peripheral injection of gabapentin. Pain 76: 201–7

    PubMed  CAS  Google Scholar 

  28. Chen SR, Xu Z, Pan HL (2001) Stereospecific effect of pregabalin on ectopic afferent discharges and neuropathic pain induced by sciatic nerve ligation in rats. Anesthesiology 95: 1473–9

    PubMed  CAS  Google Scholar 

  29. Luo ZD, Chaplan SR, Higuera ES et al. (2001) Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 21: 1868–75

    PubMed  CAS  Google Scholar 

  30. Sutton KG, Martin DJ, Pinnock RD et al. (2002) Gabapentin inhibits highthreshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol 135: 257–65

    PubMed  CAS  Google Scholar 

  31. Sarantopoulos C, McCallum B, Kwok WM, Hogan Q (2002) Gabapentin decreases membrane calcium currents in injured as well as in control mammalian primary afferent neurons. Reg Anesth Pain Med 27: 47–57

    PubMed  CAS  Google Scholar 

  32. Vanegas H, Schaible H (2000) Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85: 9–18

    PubMed  CAS  Google Scholar 

  33. Shimoyama M, Shimoyama N, Hori Y (2000) Gabapentin affects glutamatergic excitatory neurotransmission in the rat dorsal horn. Pain 85: 405–14

    PubMed  CAS  Google Scholar 

  34. Tanabe M, Takasu K, Kasuya N et al. (2005) Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. Br J Pharmacol 144: 703–14

    PubMed  CAS  Google Scholar 

  35. Takeuchi Y, Takasu K, Honda M et al. (2007) Neurochemical evidence that supraspinally administered gabapentin activates the descending noradrenergic system after peripheral nerve injury. Eur J Pharmacol 556: 69–74

    PubMed  CAS  Google Scholar 

  36. Hunter JC, Gogas KR, Hedley LR et al. (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324: 153–60

    PubMed  CAS  Google Scholar 

  37. Werner MU, Perkins FM, Holte K et al. (2001) Effects of gabapentin in acute inflammatory pain in humans. Reg Anesth Pain Med 26: 322–8

    PubMed  CAS  Google Scholar 

  38. Fehrenbacher JC, Taylor CP, Vasko MR (2003) Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain 105: 133–41

    PubMed  CAS  Google Scholar 

  39. Curros-Criado MM, Herrero JF (2007) The antinociceptive effect of systemic gabapentin is related to the type of sensitization-induced hyperalgesia. J Neuroinflammation 4: 15

    PubMed  Google Scholar 

  40. Taylor CP (1997) Mechanisms of action of gabapentin. Rev Neurol (Paris) 153 (Suppl 1): S39–45

    Google Scholar 

  41. Sills GJ (2006) The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol 6: 108–13

    PubMed  CAS  Google Scholar 

  42. Errante LD, Williamson A, Spencer DD, Petroff OA (2002) Gabapentin and vigabatrin increase GABA in the human neocortical slice. Epilepsy Res 49: 203–10

    PubMed  CAS  Google Scholar 

  43. Kim YI, Na HS, Yoon YW et al. (1997) NMDA receptors are important for both mechanical and thermal allodynia from peripheral nerve injury in rats. Neuroreport 8: 2149–53

    PubMed  CAS  Google Scholar 

  44. Gu Y, Huang LY (2001) Gabapentin actions on N-methyl-d-aspartate receptor channels are protein kinase C-dependent. Pain 93: 85–92

    PubMed  CAS  Google Scholar 

  45. Suarez LM, Suarez F, Del Olmo N et al. (2005) Presynaptic NMDA autoreceptors facilitate axon excitability: a new molecular target for the anticonvulsant gabapentin. Eur J Neurosci 21: 197–209

    PubMed  Google Scholar 

  46. Gu Y, Huang LY (2002) Gabapentin potentiates N-methyl-d-aspartate receptor mediated currents in rat GABAergic dorsal horn neurons. Neurosci Lett 324: 177–80

    PubMed  CAS  Google Scholar 

  47. Zahn PK, Brennan TJ (1998) Lack of effect of intrathecally administered N-methyl-d-aspartate receptor antagonists in a rat model for postoperative pain. Anesthesiology 88: 143–56

    PubMed  CAS  Google Scholar 

  48. Cheng JK, Pan HL, Eisenach JC (2000) Antiallodynic effect of intrathecal gabapentin and its interaction with clonidine in a rat model of postoperative pain. Anesthesiology 92: 1126–31

    PubMed  CAS  Google Scholar 

  49. Field MJ, Holloman EF, McCleary S et al. (1997) Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 282: 1242–6

    PubMed  CAS  Google Scholar 

  50. Errante LD, Petroff OA (2003) Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure 12: 300–6

    PubMed  Google Scholar 

  51. McClelland D, Evans RM, Barkworth L et al. (2004) A study comparing the actions of gabapentin and pregabalin on the electrophysiological properties of cultured DRG neurones from neonatal rats. BMC Pharmacol 4: 14

    PubMed  Google Scholar 

  52. Surges R, Freiman TM, Feuerstein TJ (2003) Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 44: 150–6

    PubMed  CAS  Google Scholar 

  53. Suman-Chauhan N, Webdale L, Hill DR, Woodruff GN (1993) Characterisation of [3H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur J Pharmacol 244: 293–301

    PubMed  CAS  Google Scholar 

  54. Gee NS, Brown JP, Dissanayake VU et al. (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 271: 5768–76

    PubMed  CAS  Google Scholar 

  55. Felix R (1999) Voltage-dependent Ca2+ channel alpha2delta auxiliary subunit: structure, function and regulation. Receptors Channels 6: 351–62

    PubMed  CAS  Google Scholar 

  56. Dunevsky A, Perel AB (1998) Gabapentin for relief of spasticity associated with multiple sclerosis. Am J Phys Med Rehabil 77: 451–4

    PubMed  CAS  Google Scholar 

  57. Cheng JK, Chiou LC (2006) Mechanisms of the antinociceptive action of gabapentin. J Pharmacol Sci 100: 471–86

    PubMed  CAS  Google Scholar 

  58. Matthews EA, Dickenson AH (2001) Effects of spinally delivered N-and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain 92: 235–46

    PubMed  CAS  Google Scholar 

  59. Finnerup NB, Sindrup SH, Bach FW et al. (2002) Lamotrigine in spinal cord injury pain: a randomized controlled trial. Pain 96: 375–83

    PubMed  CAS  Google Scholar 

  60. Dickenson AH, Matthews EA, Suzuki R (2002) Neurobiology of neuropathic pain: mode of action of anticonvulsants. Eur J Pain 6 (Suppl A): 51–60

    PubMed  CAS  Google Scholar 

  61. Maneuf YP, Luo ZD, Lee K (2006) Alpha2delta and the mechanism of action of gabapentin in the treatment of pain. Semin Cell Dev Biol 17: 565–70

    PubMed  CAS  Google Scholar 

  62. Dickenson AH, Ghandehari J (2007) Anti-convulsants and anti-depressants. Handb Exp Pharmacol (177): 145–77

    PubMed  CAS  Google Scholar 

  63. Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88: 381–94

    PubMed  CAS  Google Scholar 

  64. Vanegas H, Schaible HG (2004) Descending control of persistent pain: inhibitory or facilitatory? Brain Res Brain Res Rev 46: 295–309

    PubMed  Google Scholar 

  65. Hayashida K, DeGoes S, Curry R, Eisenach JC (2007) Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. Anesthesiology 106: 557–62

    PubMed  CAS  Google Scholar 

  66. Suzuki R, Morcuende S, Webber M et al. (2002) Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci 5: 1319–26

    PubMed  CAS  Google Scholar 

  67. Gauriau C, Bernard JF (2002) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87: 251–8

    PubMed  Google Scholar 

  68. Rahman W, Suzuki R, Webber M et al. (2006) Depletion of endogenous spinal 5-HT attenuates the behavioural hypersensitivity to mechanical and cooling stimuli induced by spinal nerve ligation. Pain 123: 264–74

    PubMed  CAS  Google Scholar 

  69. Suzuki R, Rahman W, Hunt SP, Dickenson AH (2004) Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res 1019: 68–76

    PubMed  CAS  Google Scholar 

  70. Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25: 613–7

    PubMed  CAS  Google Scholar 

  71. Suzuki R, Rahman W, Rygh LJ et al. (2005) Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain 117: 292–303

    PubMed  CAS  Google Scholar 

  72. Suzuki R, Dickenson AH (2006) Differential pharmacological modulation of the spontaneous stimulus-independent activity in the rat spinal cord following peripheral nerve injury. Exp Neurol 198: 72–80

    PubMed  CAS  Google Scholar 

  73. Stanfa LC, Singh L, Williams RG, Dickenson AH (1997) Gabapentin, ineffective in normal rats, markedly reduces C-fibre evoked responses after inflammation. Neuroreport 8: 587–90

    PubMed  CAS  Google Scholar 

  74. Lu Y, Westlund KN (1999) Gabapentin attenuates nociceptive behaviors in an acute arthritis model in rats. J Pharmacol Exp Ther 290: 214–9

    PubMed  CAS  Google Scholar 

  75. Field MJ, Oles RJ, Lewis AS et al. (1997) Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 121: 1513–22

    PubMed  CAS  Google Scholar 

  76. Luo ZD, Calcutt NA, Higuera ES et al. (2002) Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303: 1199–205

    PubMed  CAS  Google Scholar 

  77. Eckhardt K, Ammon S, Hofmann U et al. (2000) Gabapentin enhances the analgesic effect of morphine in healthy volunteers. Anesth Analg 91: 185–91

    PubMed  CAS  Google Scholar 

  78. Dirks J, Petersen KL, Rowbotham MC, Dahl JB (2002) Gabapentin suppresses cutaneous hyperalgesia following heat-capsaicin sensitization. Anesthesiology 97: 102–7

    PubMed  CAS  Google Scholar 

  79. Arendt-Nielsen L, Frokjaer JB, Staahl C et al. (2007) Effects of gabapentin on experimental somatic pain and temporal summation. Reg Anesth Pain Med 32: 382–8

    PubMed  CAS  Google Scholar 

  80. Dahl JB, Mathiesen O, Moiniche S (2004) ‘Protective premedication’: an option with gabapentin and related drugs? A review of gabapentin and pregabalin in the treatment of post-operative pain. Acta Anaesthesiol Scand 48: 1130–6

    PubMed  CAS  Google Scholar 

  81. Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367: 1618–25

    PubMed  Google Scholar 

  82. Gilron I (2006) Review article: the role of anticonvulsant drugs in postoperative pain management: a bench-to-bedside perspective. Can J Anaesth 53: 562–71

    PubMed  Google Scholar 

  83. Dirks J, Fredensborg BB, Christensen D et al. (2002) A randomized study of the effects of single-dose gabapentin versus placebo on postoperative pain and morphine consumption after mastectomy. Anesthesiology 97: 560–4

    PubMed  CAS  Google Scholar 

  84. Fassoulaki A, Patris K, Sarantopoulos C, Hogan Q (2002) The analgesic effect of gabapentin and mexiletine after breast surgery for cancer. Anesth Analg 95: 985–91

    PubMed  CAS  Google Scholar 

  85. Turan A, Memis D, Karamanlioglu B et al. (2004) The analgesic effects of gabapentin in monitored anesthesia care for ear-nose-throat surgery. Anesth Analg 99: 375–8

    PubMed  CAS  Google Scholar 

  86. Dierking G, Duedahl TH, Rasmussen ML et al. (2004) Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: a randomized, double-blind trial. Acta Anaesthesiol Scand 48: 322–7

    PubMed  CAS  Google Scholar 

  87. Pandey CK, Sahay S, Gupta D et al. (2004) Preemptive gabapentin decreases postoperative pain after lumbar discoidectomy. Can J Anaesth 51: 986–9

    PubMed  Google Scholar 

  88. Turan A, Karamanlioglu B, Memis D et al. (2004) The analgesic effects of gabapentin after total abdominal hysterectomy. Anesth Analg 98: 1370–3

    PubMed  Google Scholar 

  89. Turan A, Karamanlioglu B, Memis D et al. (2004) Analgesic effects of gabapentin after spinal surgery. Anesthesiology 100: 935–8

    PubMed  CAS  Google Scholar 

  90. Pandey CK, Priye S, Singh S et al. (2004) Preemptive use of gabapentin significantly decreases postoperative pain and rescue analgesic requirements in laparoscopic cholecystectomy. Can J Anaesth 51: 358–63

    PubMed  Google Scholar 

  91. Turan A, White PF, Karamanlioglu B et al. (2006) Gabapentin: an alternative to the cyclooxygenase-2 inhibitors for perioperative pain management. Anesth Analg 102: 175–81

    PubMed  CAS  Google Scholar 

  92. Fassoulaki A, Stamatakis E, Petropoulos G et al. (2006) Gabapentin attenuates late but not acute pain after abdominal hysterectomy. Eur J Anaesthesiol 23: 136–41

    PubMed  CAS  Google Scholar 

  93. Brogly N, Wattier JM, Andrieu G et al. (2008) Gabapentin attenuates late but not early postoperative pain after thyroidectomy with peripheral cervical plexus block. Anesth Analg 107: 1720–5

    PubMed  CAS  Google Scholar 

  94. Hill CM, Balkenohl M, Thomas DW et al. (2001) Pregabalin in patients with postoperative dental pain. Eur J Pain 5: 119–24

    PubMed  CAS  Google Scholar 

  95. Paech MJ, Goy R, Chua S et al. (2007) A randomized, placebo-controlled trial of preoperative oral pregabalin for postoperative pain relief after minor gynecological surgery. Anesth Analg 105: 1449–53

    PubMed  CAS  Google Scholar 

  96. Mula M, Pini S, Cassano GB (2007) The role of anticonvulsant drugs in anxiety disorders: a critical review of the evidence. J Clin Psychopharmacol 27: 263–72

    PubMed  CAS  Google Scholar 

  97. Menigaux C, Adam F, Guignard B et al. (2005) Preoperative gabapentin decreases anxiety and improves early functional recovery from knee surgery. Anesth Analg 100: 1394–9

    PubMed  CAS  Google Scholar 

  98. Montgomery SA (2006) Pregabalin for the treatment of generalised anxiety disorder. Expert Opin Pharmacother 7: 2139–54

    PubMed  CAS  Google Scholar 

  99. Guttuso T, Jr., Roscoe J, Griggs J (2003) Effect of gabapentin on nausea induced by chemotherapy in patients with breast cancer. Lancet 361: 1703–5

    PubMed  CAS  Google Scholar 

  100. Mathiesen O, Moiniche S, Dahl JB (2007) Gabapentin and postoperative pain: a qualitative and quantitative systematic review, with focus on procedure. BMC Anesthesiol 7: 6

    PubMed  Google Scholar 

  101. Fassoulaki A, Melemeni A, Paraskeva A, Petropoulos G (2006) Gabapentin attenuates the pressor response to direct laryngoscopy and tracheal intubation. Br J Anaesth 96: 769–73

    PubMed  CAS  Google Scholar 

  102. Gilron I, Orr E, Tu D et al. (2005) A placebo-controlled randomized clinical trial of perioperative administration of gabapentin, rofecoxib and their combination for spontaneous and movement-evoked pain after abdominal hysterectomy. Pain 113: 191–200

    PubMed  CAS  Google Scholar 

  103. Kong VK, Irwin MG (2007) Gabapentin: a multimodal perioperative drug? Br J Anaesth 99: 775–86

    PubMed  CAS  Google Scholar 

  104. M, Kadir But A, Saricicek V et al. (2007) The post-operative analgesic effects of a combination of gabapentin and paracetamol in patients undergoing abdominal hysterectomy: a randomized clinical trial. Acta Anaesthesiol Scand 51: 299–304

    Google Scholar 

  105. Bonnet F, Marret E (2007) Postoperative pain management and outcome after surgery. Best Pract Res Clin Anaesthesiol 21: 99–107

    PubMed  Google Scholar 

  106. Matthews EA, Dickenson AH (2002) A combination of gabapentin and morphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology 96: 633–40

    PubMed  CAS  Google Scholar 

  107. Gilron I, Biederman J, Jhamandas K, Hong M (2003) Gabapentin blocks and reverses antinociceptive morphine tolerance in the rat paw-pressure and tailflick tests. Anesthesiology 98: 1288–92

    PubMed  Google Scholar 

  108. Fassoulaki A, Melemeni A, Stamatakis E et al. (2007) A combination of gabapentin and local anaesthetics attenuates acute and late pain after abdominal hysterectomy. Eur J Anaesthesiol 24: 521–8

    PubMed  CAS  Google Scholar 

  109. Adam F, Menigaux C, Sessler DI, Chauvin M (2006) A single preoperative dose of gabapentin (800 milligrams) does not augment postoperative analgesia in patients given interscalene brachial plexus blocks for arthroscopic shoulder surgery. Anesth Analg 103: 1278–82

    PubMed  CAS  Google Scholar 

  110. Andrieu G, Amrouni H, Robin E et al.(2007) Analgesic efficacy of bilateral superficial cervical plexus block administered before thyroid surgery under general anaesthesia. Br J Anaesth 99: 561–6

    PubMed  CAS  Google Scholar 

  111. Al-Mujadi H, A-Refai AR, Katzarov MG et al. (2006) Preemptive gabapentin reduces postoperative pain and opioid demand following thyroid surgery. Can J Anaesth 53: 268–73

    PubMed  Google Scholar 

  112. Hurley RW, Chatterjea D, Rose Feng M et al. (2002) Gabapentin and pregabalin can interact synergistically with naproxen to produce antihyperalgesia. Anesthesiology 97: 1263–73

    PubMed  CAS  Google Scholar 

  113. Yoon MH, Choi JI, Kwak SH (2004) Characteristic of interactions between intrathecal gabapentin and either clonidine or neostigmine in the formalin test. Anesth Analg 98: 1374–9

    PubMed  CAS  Google Scholar 

  114. Lavand’homme P, De Kock M, Waterloos H (2005) Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. Anesthesiology 103: 813–20

    CAS  Google Scholar 

  115. Lavand’homme P (2006) Postcesarean analgesia: effective strategies and association with chronic pain. Curr Opin Anaesthesiol 19: 244–8

    Google Scholar 

  116. Reuben SS, Buvanendran A (2007) Preventing the development of chronic pain after orthopaedic surgery with preventive multimodal analgesic techniques. J Bone Joint Surg Am 89: 1343–58

    PubMed  Google Scholar 

  117. Fassoulaki A, Triga A, Melemeni A, Sarantopoulos C (2005) Multimodal analgesia with gabapentin and local anesthetics prevents acute and chronic pain after breast surgery for cancer. Anesth Analg 101: 1427–32

    PubMed  CAS  Google Scholar 

  118. Pandey CK, Navkar DV, Giri PJ et al. (2005) Evaluation of the optimal preemptive dose of gabapentin for postoperative pain relief after lumbar diskectomy: a randomized, double-blind, placebo-controlled study. J Neurosurg Anesthesiol 17: 65–8

    PubMed  Google Scholar 

  119. Pandey CK, Singhal V, Kumar M et al. (2005) Gabapentin provides effective postoperative analgesia whether administered pre-emptively or post-incision. Can J Anaesth 52: 827–31

    PubMed  Google Scholar 

  120. Nikolajsen L, Finnerup NB, Kramp S et al. (2006) A randomized study of the effects of gabapentin on postamputation pain. Anesthesiology 105: 1008–15

    PubMed  CAS  Google Scholar 

  121. Hurley RW, Cohen SP, Williams KA et al. (2006) The analgesic effects of perioperative gabapentin on postoperative pain: a meta-analysis. Reg Anesth Pain Med 31: 237–47

    PubMed  CAS  Google Scholar 

  122. Bouhassira D, Lanteri-Minet M, Attal N et al. (2008) Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136: 380–7

    PubMed  Google Scholar 

  123. Olesen SS, Geavesen C, Olesen AE, et al. (2011) Randomized clinical trial: pregabalin attenuates experimental visceral pain through sub-cortical mechanisms in patients with painful chronic pancreatitis. Aliment Pharmacol Ther 34: 878–87

    PubMed  CAS  Google Scholar 

  124. Straube S, Derry S, Moore RA, et al. (2010) Single dose oral gabapentine for established acute postoperative pain in adults. Cochrane Database Syst Rev 12(5): CD008183

    Google Scholar 

  125. Zhang J, Ho KY, Wang Y (2011) Efficacy of pregabaline in acute postoperative pain: a meta-analysis. BJA 106: 4454–62

    Google Scholar 

  126. Engelman E, Cateloy F (2011) Efficacy and safety of perioperative prégabaline for postoperative pain: a meta-analysis of randomized-controlled trials. Acta Anaesthesiol Scand 55: 927–943

    PubMed  CAS  Google Scholar 

  127. Gilron I, Orr E, Tu D, Mercer CD, et al. (2009) Randomized, double-blind, controlled trial of perioperative administration of gabapentin, meloxicam and their combination for spontaneous and movement-evoked pain after ambulatory laparoscopic cholecystectomy. Anesth Analg 108(2): 623–30

    PubMed  CAS  Google Scholar 

  128. Moore A, Costello J, Wieczorek P, Shah V, et al. (2011) Gabapentin improves postcesarean delivery pain management: a randomized, placebo-controlled trial. Anesth Analg 112(1): 167–73

    PubMed  CAS  Google Scholar 

  129. Ucak A, Onan B, Sen H, et al. (2011) The effects of gabapentin on acute and chronic postoperative pain after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25(5): 824–9

    PubMed  CAS  Google Scholar 

  130. Buvanendran A, Kroin JS, Della Valle CJ, et al. (2010) Perioperative oral pregabalin reduces chronic pain after total knee arthroplasty: a prospective, randomized, controlled trial. Anesth Analg 110(1): 199–207

    PubMed  CAS  Google Scholar 

  131. Clarke H, Bonin RP, Orser BA, et al. (2012) The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg Mar 115: 428–42

    CAS  Google Scholar 

  132. Remérand F, Couvret C, Baud A, et al. (2011) Benefits and safety of perioperative pregabalin: a systematic review. Ann Fr Anesth Reanim 30(7–8): 569–77

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Wattier, JM. (2013). Antiépileptiques et antihyperalgésie péri-opératoire: état des lieux. In: La douleur chronique post-chirurgicale. Springer, Paris. https://doi.org/10.1007/978-2-8178-0026-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0026-4_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0025-7

  • Online ISBN: 978-2-8178-0026-4

Publish with us

Policies and ethics