Skip to main content

Tumeurs stromales gastro-intestinales

  • Chapter
Thérapeutique du cancer
  • 754 Accesses

Résumé

Les tumeurs stromales gastro-intestinales (Gastrointestinal Stromal Tumors ou GIST en anglais) sont des tumeurs malignes rares du tube digestif. Leur origine présumée est la cellule de Cajal qui assure la contraction autonome du tube digestif. Les GIST sont rattachées au groupe des sarcomes des tissus mous, dont elles constituent environ 20 % [1]. Ces tumeurs constituent un modèle d’application des connaissances de la biologie des cancers à la pratique clinique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Ducimetiere F, Lurkin A, Ranchere-Vince D et al. (2010) [Incidence rate, epidemiology of sarcoma and molecular biology. Preliminary results from EMS study in the Rhone-Alpes region.]. Bull Cancer 97: 629–641

    PubMed  CAS  Google Scholar 

  2. Nilsson B, Bumming P, Meis-Kindblom JM et al. (2005) Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era—a population-based study in western Sweden. Cancer 103: 821–829

    Article  PubMed  Google Scholar 

  3. Tryggvason G, Gislason HG, Magnusson MK, Jonasson JG (2005) Gastrointestinal stromal tumors in Iceland, 1990–2003: the icelandic GIST study, a population-based incidence and pathologic risk stratification study. Int J Cancer 117: 289–293

    Article  PubMed  CAS  Google Scholar 

  4. Monges G, Bisot-Locard S, Blay JY et al. (2010) The estimated incidence of gastrointestinal stromal tumors in France. Results of PROGIST study conducted among pathologists. Bull Cancer 97: E16–E22

    PubMed  Google Scholar 

  5. Miettinen M, Sobin LH, Lasota J (2005) Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 29: 52–68

    Article  PubMed  Google Scholar 

  6. Miettinen M, Makhlouf H, Sobin LH, Lasota J (2006) Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol 30: 477–489

    Article  PubMed  Google Scholar 

  7. Benesch M, Wardelmann E, Ferrari A et al. (2009) Gastrointestinal stromal tumors (GIST) in children and adolescents: A comprehensive review of the current literature. Pediatr Blood Cancer 53: 1171–1179

    Article  PubMed  Google Scholar 

  8. Fletcher CD, Berman JJ, Corless C et al. (2002) Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 33: 459–465

    Article  PubMed  Google Scholar 

  9. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23: 70–83

    Article  PubMed  Google Scholar 

  10. Hirota S, Isozaki K, Moriyama Y et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580

    Article  PubMed  CAS  Google Scholar 

  11. Heinrich MC, Corless CL, Demetri GD et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–4349

    Article  PubMed  CAS  Google Scholar 

  12. Heinrich MC, Corless CL, Duensing A et al. (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–710

    Article  PubMed  CAS  Google Scholar 

  13. Corless CL, Schroeder A, Griffith D et al. (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 23: 5357–5364

    Article  PubMed  CAS  Google Scholar 

  14. Cassier PA, Ducimetiere F, Lurkin A et al. (2010) A prospective epidemiological study of new incident GISTs during two consecutive years in Rhône Alpes region: incidence and molecular distribution of GIST in a European region. Br J Cancer 103:165–170

    Article  PubMed  CAS  Google Scholar 

  15. Andersson J, Bumming P, Meis-Kindblom JM et al. (2006) Gastrointestinal stromal tumors with KIT exon 11 deletions are associated with poor prognosis. Gastroenterology 130: 1573–1581

    Article  PubMed  CAS  Google Scholar 

  16. Penzel R, Aulmann S, Moock M et al. (2005) The location of KIT and PDGFRA gene mutations in gastrointestinal stromal tumours is site and phenotype associated. J Clin Pathol 58: 634–639

    Article  PubMed  CAS  Google Scholar 

  17. Lasota J, Nsonka-Mieszkowska A, Sobin LH, Miettinen M (2004) A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 84: 874–883

    Article  PubMed  CAS  Google Scholar 

  18. Wardelmann E, Hrychyk A, Merkelbach-Bruse S et al. (2004) Association of platelet-derived growth factor receptor alpha mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J Mol Diagn 6: 197–204

    Article  PubMed  CAS  Google Scholar 

  19. Agaimy A, Wunsch PH, Hofstaedter F et al. (2007) Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol 31: 113–120

    Article  PubMed  Google Scholar 

  20. Kawanowa K, Sakuma Y, Sakurai S et al. (2006) High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum Pathol 37: 1527–1535

    Article  PubMed  Google Scholar 

  21. Corless CL, McGreevey L, Haley A et al. (2002) KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol 160: 1567–1572

    Article  PubMed  CAS  Google Scholar 

  22. Tabone-Eglinger S, Subra F, El SH et al. (2008) KIT mutations induce intracellular retention and activation of an immature form of the KIT protein in gastrointestinal stromal tumors. Clin Cancer Res 14: 2285–2294

    Article  PubMed  CAS  Google Scholar 

  23. Bougherara H, Subra F, Crepin R et al. (2009) The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment. Mol Cancer Res 7: 1525–1533

    Article  PubMed  CAS  Google Scholar 

  24. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105: 2640–2653

    Article  PubMed  CAS  Google Scholar 

  25. Dewar AL, Cambareri AC, Zannettino AC et al. (2005) Macrophage colonystimulating factor receptor c-fms is a novel target of imatinib. Blood 2005 105: 3127–3132

    Article  PubMed  CAS  Google Scholar 

  26. Agaimy A, Terracciano LM, Dirnhofer S et al. (2009) V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol 62: 613–616

    Article  PubMed  CAS  Google Scholar 

  27. Martinho O, Gouveia A, Viana-Pereira M et al. (2009) Low frequency of MAP kinase pathway alterations in KIT and PDGFRA wild-type GISTs. Histopathology 55: 53–62

    Article  PubMed  Google Scholar 

  28. Heinrich MC, Rubin BP, Longley BJ, Fletcher JA (2002) Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol 33: 484–495

    Article  PubMed  CAS  Google Scholar 

  29. Duensing A, Medeiros F, McConarty B et al. (2004) Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 23: 3999–4006

    Article  PubMed  CAS  Google Scholar 

  30. Tarn C, Skorobogatko YV, Taguchi T et al. (2006) Therapeutic effect of imatinib in gastrointestinal stromal tumors: AKT signaling dependent and independent mechanisms. Cancer Res 66: 5477–5486

    Article  PubMed  CAS  Google Scholar 

  31. Benesch M, Wardelmann E, Ferrari A et al. (2009) Gastrointestinal stromal tumors (GIST) in children and adolescents: A comprehensive review of the current literature. Pediatr Blood Cancer 53: 1171–1179

    Article  PubMed  Google Scholar 

  32. Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593–604

    Article  PubMed  CAS  Google Scholar 

  33. Miettinen M, Fetsch JF, Sobin LH, Lasota J (2006) Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol 30: 90–96

    Article  PubMed  Google Scholar 

  34. Zhang L, Smyrk TC, Young WF, Jr. et al. (2010) Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 34: 53–64

    Article  PubMed  Google Scholar 

  35. Zhang L, Smyrk TC, Young WF, Jr. et al. (2010) Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 34: 53–64

    Article  PubMed  Google Scholar 

  36. Kleinbaum EP, Lazar AJ, Tamborini E et al. (2008) Clinical, histopathologic, molecular and therapeutic findings in a large kindred with gastrointestinal stromal tumor. Int J Cancer 122: 711–718

    Article  PubMed  CAS  Google Scholar 

  37. Maeyama H, Hidaka E, Ota H et al. (2001) Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120: 210–215

    Article  PubMed  CAS  Google Scholar 

  38. Li FP, Fletcher JA, Heinrich MC et al. (2005) Familial gastrointestinal stromal tumor syndrome: phenotypic and molecular features in a kindred. J Clin Oncol 23: 2735–2743

    Article  PubMed  CAS  Google Scholar 

  39. Maeyama H, Hidaka E, Ota H et al. (2001) Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120: 210–215

    Article  PubMed  CAS  Google Scholar 

  40. Nishida T, Hirota S, Taniguchi M et al. (1998) Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 19: 323–324

    Article  PubMed  CAS  Google Scholar 

  41. Pasini B, McWhinney SR, Bei T et al. (2010) Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 16: 79–88

    Article  Google Scholar 

  42. Janeway KA, Kim ST, Lodish M et al. Succinate dehydrogenase in KIT/PDGFRA wild-type gastrointestinal stromal tumors.S. ASCO Meeting Abstracts

    Google Scholar 

  43. Casali PG, Jost L, Reichardt P et al. (2008) Gastrointestinal stromal tumors: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19(Suppl 2): ii35–ii38

    Article  PubMed  Google Scholar 

  44. Demetri GD, Benjamin RS, Blanke CD et al. (2007) NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST)—update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw 5(Suppl 2): S1–29; quiz S30: S1–29

    PubMed  Google Scholar 

  45. Casali PG, Jost L, Reichardt P et al. (2008) Gastrointestinal stromal tumors: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19(Suppl 2): ii35–ii38

    Article  PubMed  Google Scholar 

  46. Demetri GD, Benjamin RS, Blanke CD et al. (2007) NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST)—update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw 5(Suppl 2): S1–29; quiz S30: S1–29

    PubMed  Google Scholar 

  47. Joensuu H (2008) Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39: 1411–1419

    Article  PubMed  Google Scholar 

  48. Casali PG, Jost L, Reichardt P et al. (2008) Gastrointestinal stromal tumors: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19(Suppl 2): ii35–ii38

    Article  PubMed  Google Scholar 

  49. Miettinen M, Lasota J, Sobin LH (2005) Gastrointestinal stromal tumors of the stomach in children and young adults: a clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases with long-term followup and review of the literature. Am J Surg Pathol 29: 1373–1381

    Article  PubMed  Google Scholar 

  50. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23: 70–83

    Article  PubMed  Google Scholar 

  51. Aparicio T, Boige V, Sabourin JC et al. (2004) Prognostic factors after surgery of primary resectable gastrointestinal stromal tumours. Eur J Surg Oncol 30: 1098–1103

    Article  PubMed  CAS  Google Scholar 

  52. Rutkowski P, Nowecki ZI, Michej W et al. (2007) Risk criteria and prognostic factors for predicting recurrences after resection of primary gastrointestinal stromal tumor. Ann Surg Oncol 14: 2018–2027

    Article  PubMed  Google Scholar 

  53. Lasota J, Nsonka-Mieszkowska A, Sobin LH, Miettinen M (2004) A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 84: 874–883

    Article  PubMed  CAS  Google Scholar 

  54. Andersson J, Bumming P, Meis-Kindblom JM et al. (2006) Gastrointestinal stromal tumors with KIT exon 11 deletions are associated with poor prognosis. Gastroenterology 130: 1573–1581

    Article  PubMed  CAS  Google Scholar 

  55. Dematteo RP, Gold JS, Saran L et al. (2008) Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer 112: 608–615

    Article  PubMed  Google Scholar 

  56. Martin J, Poveda A, Llombart-Bosch A et al. (2005) Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol 23: 6190–6198

    Article  PubMed  CAS  Google Scholar 

  57. Blay J-Y, Bui BN, Cassier P et al. (2010) Correlation of the topography of KIT exon 11 mutation with primary GIST location and predictive value for PFS in patients with advanced GIST: Results from the BFR14 randomized phase III trial of the French Sarcoma Group. J Clin Oncol (Meeting Abstracts)

    Google Scholar 

  58. Corless C, Ballman KV, Antonescu C et al. (2010) Relation of tumor pathologic and molecular features to outcome after surgical resection of localized primary gastrointestinal stromal tumor (GIST): Results of the intergroup phase III trial ACOSOG Z9001. ASCO Meeting Abstracts

    Google Scholar 

  59. Dematteo RP, Ballman KV, Antonescu CR et al. (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373: 1097–1104

    Article  PubMed  CAS  Google Scholar 

  60. Dematteo RP, Ballman KV, Antonescu CR et al. (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373: 1097–1104

    Article  PubMed  CAS  Google Scholar 

  61. Demetri GD, von Demetri MM, Blanke CD et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–480

    Article  PubMed  CAS  Google Scholar 

  62. Verweij J, Casali PG, Zalcberg J et al. (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  63. Blanke CD, Rankin C, Demetri GD et al. (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 26: 626–632

    Article  PubMed  CAS  Google Scholar 

  64. Edmonson JH, Marks RS, Buckner JC, Mahoney MR (2002) Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Invest 20: 605–612

    Article  PubMed  CAS  Google Scholar 

  65. Trent JC, Beach J, Burgess MA et al. (2003) A two-arm phase II study of temozolomide in patients with advanced gastrointestinal stromal tumors and other soft tissue sarcomas. Cancer 98: 2693–2699

    Article  PubMed  CAS  Google Scholar 

  66. Bramwell VH, Morris D, Ernst DS et al. (2002) Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin Cancer Res 8: 383–393

    PubMed  CAS  Google Scholar 

  67. Blay JY, Le CA, Ray-Coquard I et al. (2007) Prospective multicentric randomized phase III study of imatinib in patients with advanced gastrointestinal stromal tumors comparing interruption versus continuation of treatment beyond 1 year: the French Sarcoma Group. J Clin Oncol 25: 1107–1113

    Article  PubMed  CAS  Google Scholar 

  68. Heinrich MC, Corless CL, Demetri GD et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–4349

    Article  PubMed  CAS  Google Scholar 

  69. Debiec-Rychter M, Dumez H, Judson I et al. (2004) Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 40: 689–695

    Article  PubMed  CAS  Google Scholar 

  70. Debiec-Rychter M, Sciot R, Le CA et al. (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42: 1093–1103

    Article  PubMed  CAS  Google Scholar 

  71. Van Glabbeke MM, Owzar K, Rankin C et al. GIST Meta-analysis Group (2007) Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors (GIST): A meta-analyis based on 1,640 patients (pts). J Clin Oncol (Meeting Abstracts) 25(18suppl): 10004

    Google Scholar 

  72. Heinrich MC, Owzar K, Corless CL et al. (2008) Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 26: 5360–5367

    Article  PubMed  CAS  Google Scholar 

  73. Biron P, Cassier P, Fumagalli E et al. (2010) Outcome of patients with PDGFRA D842V mutant gastrointestinal stromal tumor (GIST) treated with imatinib (IM) for advanced disease. ASCO Meeting Abstracts

    Google Scholar 

  74. Le Cesne A, Ray-Coquard I, Bui B et al. (2007) Continuous versus interruption of imatinib (IM) in responding patients with advanced GIST after three years of treatment: A prospective randomized phase III trial of the French Sarcoma Group. J Clin Oncol (Meeting Abstracts) 25(18 suppl): 10005

    Google Scholar 

  75. Duffaud F, Ray-Coquard I, Bui B et al. (2009) Time to secondary resistance (TSR) after interruption of imatinib: Updated results of the prospective French Sarcoma Group randomized phase III trial on long-term survival. J Clin Oncol (Meeting Abstracts) 27: 10508

    Google Scholar 

  76. Therasse P, Arbuck SG, Eisenhauer EA et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205–216

    Article  PubMed  CAS  Google Scholar 

  77. Gayed I, Vu T, Iyer R et al. (2004) The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 45: 17–21

    PubMed  CAS  Google Scholar 

  78. Stroobants S, Goeminne J, Seegers M et al. (2003) 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 39: 2012–2020

    Article  PubMed  CAS  Google Scholar 

  79. Choi H, Charnsangavej C, Faria SC et al. (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25: 1753–1759

    Article  PubMed  Google Scholar 

  80. Benjamin RS, Choi H, Macapinlac HA et al. (2007) We should desist using RECIST, at least in GIST. J Clin Oncol 25: 1760–1764

    Article  PubMed  Google Scholar 

  81. Blanke CD, Demetri GD, von Demetri M M et al. (2008) Long-term results from a randomized phase II trial of standard-versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 26: 620–625

    Article  PubMed  CAS  Google Scholar 

  82. Le Cesne A, Van Cesne GM, Verweij J et al. (2009) Absence of progression as assessed by response evaluation criteria in solid tumors predicts survival in advanced GI stromal tumors treated with imatinib mesylate: the intergroup EORTC-ISG-AGITG phase III trial. J Clin Oncol 27: 3969–3974

    Article  PubMed  Google Scholar 

  83. Demetri GD, Casali PG, Blay JY et al. (2009) A phase I study of single-agent nilotinib or in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res 15: 5910–5916

    Article  PubMed  CAS  Google Scholar 

  84. Heinrich MC, Maki RG, Corless CL et al. (2006) Sunitinib (SU) response in imatinib-resistant (IM-R) GIST correlates with KIT and PDGFRA mutation status. J Clin Oncol (Meeting Abstracts) 24(18 suppl): 9502

    Google Scholar 

  85. Cassier PA, Dufresne A, Arifi S et al. (2008) Novel approaches to gastrointestinal stromal tumors resistant to imatinib and sunitinib. Curr Gastroenterol Rep 10: 555–561

    Article  PubMed  Google Scholar 

  86. Zalcberg JR, Verweij J, Casali PG et al. (2005) Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 41: 1751–1757

    Article  PubMed  CAS  Google Scholar 

  87. Blanke CD, Rankin C, Demetri GD et al. (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 26: 626–632

    Article  PubMed  CAS  Google Scholar 

  88. Demetri GD, van Oosterom AT, Garrett CR et al. (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368: 1329–1338

    Article  PubMed  CAS  Google Scholar 

  89. George S, Blay JY, Casali PG et al. (2009) Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. Eur J Cancer 45: 1959–1968

    Article  PubMed  CAS  Google Scholar 

  90. Heinrich MC, Maki RG, Corless CL et al. (2008) Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 26: 5352–5359

    Article  PubMed  CAS  Google Scholar 

  91. Debiec-Rychter M, Cools J, Dumez H et al. (2005) Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128: 270–279

    Article  PubMed  CAS  Google Scholar 

  92. Prior JO, Montemurro M, Orcurto MV et al. (2009) Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol 27: 439–445

    Article  PubMed  CAS  Google Scholar 

  93. Schoffski P, Reichardt P, Blay JY et al. (2010) A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinibresistant gastrointestinal stromal tumors. Ann Oncol 21: 1990–1998

    Article  PubMed  CAS  Google Scholar 

  94. Wilhelm S, Carter C, Lynch M et al. (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5: 835–844

    Article  PubMed  CAS  Google Scholar 

  95. Wiebe L, Kasza KE, Maki RG et al. (2008) Activity of sorafenib (SOR) in patients with imatinib (IM) and sunitinib (SU)-resistant (RES) gastrointestinal stromal tumors (GIST): A phase II trial of the University of Chicago Phase II Consortium. J Clin Oncol (Meeting Abstracts) 26(18 suppl):10502

    Google Scholar 

  96. Reichardt P, Montemurro M, Gelderblom H et al. (2009) Sorafenib fourthline treatment in imatinib-, sunitinib-, and nilotinib-resistant metastatic GIST: A retrospective analysis. J Clin Oncol (Meeting Abstracts) 27: 10564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Cassier, P.A., Méeus, P., Scoazec, JY., Blay, J.Y. (2011). Tumeurs stromales gastro-intestinales. In: Thérapeutique du cancer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0021-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0021-9_20

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0020-2

  • Online ISBN: 978-2-8178-0021-9

Publish with us

Policies and ethics