Skip to main content

Part of the book series: Le point sur... ((POINT))

  • 466 Accesses

Abstrait

Les conséquences hémodynamiques des interactions cœur-poumons résultent du fait que, dans ľespace clos qu’est le thorax, le système cardiovasculaire ďune part et le système respiratoire ďautre part sont soumis à des régimes de pression différents. Lors de la respiration normale et dans des circonstances physiologiques, ces interactions n’entraînent pas de conséquences hémodynamiques significatives. Ce n’est pas le cas en présence ďune insuffisance cardiaque gauche ou droite aiguës, lors de son traitement par ventilation mécanique ou au cours du sevrage de la ventilation mécanique. Dans ces circonstances, les interactions cœur-poumons ont un retentissement hémodynamique dont le caractère néfaste ou bénéfique dépend des phénomènes physiopathologiques parfois complexes qui sont impliqués.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Snashall PD, Chung KF (1991) Airway obstruction and bronchial hyperresponsiveness in left ventricular failure and mitral stenosis. Am Rev Respir Dis. 144: 945–56

    PubMed  CAS  Google Scholar 

  2. Cabanes LR, Weber SN, Matran et al. (1989) Bronchial hyperresponsiveness to methacholine in patients with impaired left ventricular function. N Engl J Med 320: 1317–22

    PubMed  CAS  Google Scholar 

  3. Takata M, Robotham JL (1992) Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol. 72: 597–607

    PubMed  CAS  Google Scholar 

  4. Lenique F, Habis M, Lofaso F et al. (1997) Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 155: 500–5

    PubMed  CAS  Google Scholar 

  5. Guyton AC, Lindsey AW, Abernathy B et al. (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 189: 609–15

    PubMed  CAS  Google Scholar 

  6. Goldberg HS, Rabson J (1981) Control of cardiac output by systemic vessels. Circulatory adjustments to acute and chronic respiratory failure and the effect of therapeutic interventions. Am J Cardiol 47: 696–702

    Article  PubMed  CAS  Google Scholar 

  7. Lloyd TC, Jr (1983) Effect of inspiration on inferior vena caval blood flow in dogs. J Appl Physiol. 55: 1701–8

    PubMed  Google Scholar 

  8. Takata M, Wise RA, Robotham JL (1990) Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol. 69: 1961–72

    PubMed  CAS  Google Scholar 

  9. Robotham JL, Wise RA, Bromberger-Barnea B (1985) Effects of changes in abdominal pressure on left ventricular performance and regional blood flow. Crit Care Med. 13: 803–9

    Article  PubMed  CAS  Google Scholar 

  10. Hausknecht MJ, Brin KP, Weisfeldt ML et al. (1988) Effects of left ventricular loading by negative intrathoracic pressure in dogs. Circ Res. 62: 620–31

    PubMed  CAS  Google Scholar 

  11. Buda AJ, Pinsky MR, Ingels NB, Jr et al. (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 301: 453–9

    PubMed  CAS  Google Scholar 

  12. Pouleur H, Covell JW, Ross J Jr (1980) Effects of nitroprusside on venous return and central blood volume in the absence and presence of acute heart failure. Circulation. 61: 328–37

    PubMed  CAS  Google Scholar 

  13. Naughton MT, Rahman MA, Hara K et al. (1995) Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 91: 1725–31

    PubMed  CAS  Google Scholar 

  14. Pinsky MR, Summer WR, Wise RA et al. (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol. 54: 950–5

    PubMed  CAS  Google Scholar 

  15. Dhainaut JF, Devaux JY, Monsallier JF et al. (1986) Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest. 90:74–80

    Article  PubMed  CAS  Google Scholar 

  16. Payen DM, Brun-Buisson CJ, Carli PA et al. (1987) Hemodynamic, gas exchange, and hormonal consequences of LBPP during PEEP ventilation. J Appl Physiol. 62: 61–70

    PubMed  CAS  Google Scholar 

  17. Denault AY, Gorcsan J, 3rd, Pinsky MR (2001) Dynamic effects of positive-pressure ventilation on canine left ventricular pressure-volume relations. J. Appl Physiol. 91: 298–308

    PubMed  CAS  Google Scholar 

  18. Field S, Kelly SM, Macklem PT (1982) The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis. 126: 9–13

    PubMed  CAS  Google Scholar 

  19. Fessler HE, Brower RG, Wise RA, Permutt S (1988) Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure. J Appl Physiol. 65: 1244–50

    PubMed  CAS  Google Scholar 

  20. Pinsky MR, Matuschak GM, Klain M (1985) Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol. 58: 1189–98

    PubMed  CAS  Google Scholar 

  21. Viires N, Sillyc G, Aubier M et al. (1983) Regional blood flow distribution in dog during induced hypotension and low cardiac output. J Clin Invest. 72: 935–947

    Article  PubMed  CAS  Google Scholar 

  22. Bellone A, Vettorello M, Monari A et al. (2005) Noninvasive pressure support ventilation vs. continuous positive airway pressure in acute hypercapnic pulmonary edema. Intensive Care Med. 31: 807–11

    Article  PubMed  Google Scholar 

  23. Bendjelid K, Schutz N, Suter PM et al. (2005) Does continuous positive airway pressure by face mask improve patients with acute cardiogenic pulmonary edema due to left ventricular diastolic dysfunction? Chest. 127: 1053–8

    Article  PubMed  Google Scholar 

  24. Bersten AD, Holt AW, Vedig AE et al. (1991) Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med. 325: 1825–30

    PubMed  CAS  Google Scholar 

  25. Kelly CA, Newby DE, McDonagh TA et al. (2002) Randomised controlled trial of continuous positive airway pressure and standard oxygen therapy in acute pulmonary oedema; effects on plasma brain natriuretic peptide concentrations. Eur Heart J. 23: 1379–86

    Article  PubMed  CAS  Google Scholar 

  26. ĽHer E, Duquesne F, Girou E et al. (2004) Noninvasive continuous positive airway pressure in elderly cardiogenic pulmonary edema patients. Intensive Care Med. 30: 882–8

    Article  Google Scholar 

  27. Lin M, Yang YF, Chiang HT et al. (1995) Reappraisal of continuous positive airway pressure therapy in acute cardiogenic pulmonary edema. Short-term results and long-term follow-up. Chest. 107: 1379–86

    Article  PubMed  CAS  Google Scholar 

  28. Nava S, Carbone G, DiBattista N et al. (2003) Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med. 168: 1432–7

    Article  PubMed  Google Scholar 

  29. Park M, Sangean MC, Volpe Mde S et al. (2004) Randomized, prospective trial of oxygen, continuous positive airway pressure, and bilevel positive airway pressure by face mask in acute cardiogenic pulmonary edema. Crit Care Med. 32: 2407–15

    Article  PubMed  Google Scholar 

  30. Rasanen J, Heikkila J, Downs J et al. (1985) Continuous positive airway pressure by face mask in acute cardiogenic pulmonary edema. Am J Cardiol. 55: 296–300

    Article  PubMed  CAS  Google Scholar 

  31. Chadda K, Annane D, Hart N et al. (2002) Cardiac and respiratory effects of continuous positive airway pressure and noninvasive ventilation in acute cardiac pulmonary edema. Crit Care Med. 30: 2457–61

    Article  PubMed  Google Scholar 

  32. Lemaire F, Teboul JL, Cinotti L et al. (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 69: 171–9

    Article  PubMed  CAS  Google Scholar 

  33. Jubran A, Mathru M, Dries D, Tobin MJ (1988) Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 158: 1763–9

    Google Scholar 

  34. Lamia B, Monnet X, Teboul JL (2005) Weaning-induced cardiac dysfunction. In Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York. 239–45

    Chapter  Google Scholar 

  35. Straus C, Louis B, Isabey D et al. (1988) Contribution of the endotracheal tube and the upper airway to breathing workload. Am J Respir Crit Care Med. 157: 23–30

    Google Scholar 

  36. Richard C, Teboul JL (2005) Weaning failure from cardiovascular origin. Intensive Care Med. 31: 1605–7

    Article  PubMed  Google Scholar 

  37. Schmidt H, Rohr D, Bauer H et al. (1997) Changes in intrathoracic fluid volumes during weaning from mechanical ventilation in patients after coronary artery bypass grafting. J Crit Care. 12: 22–7

    Article  PubMed  CAS  Google Scholar 

  38. Richard C, Teboul JL, Archambaud F et al. (1994) Left ventricular function during weaning of patients with chronic obstructive pulmonary disease. Intensive Care Med. 20: 181–186

    Article  PubMed  CAS  Google Scholar 

  39. Hurford WE, Lynch KE, Strauss HW et al. (1991) Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients. Anesthesiology. 74: 1007–16

    Article  PubMed  CAS  Google Scholar 

  40. Hurford WE, Favorito F (1995) Association of myocardial ischemia with failure to wean from mechanical ventilation. Crit Care Med. 23: 1475–80

    Article  PubMed  CAS  Google Scholar 

  41. Chatila W, Ani S, Guaglianone D et al. (1996) Cardiac ischemia during weaning from mechanical ventilation. Chest. 109: 1577–83

    Article  PubMed  CAS  Google Scholar 

  42. Srivastava S, Chatila W, Amoateng-Adjepong Y et al. (1999) Myocardial ischemia and weaning failure in patients with coronary artery disease: an update. Crit Care Med. 27: 2109–12

    Article  PubMed  CAS  Google Scholar 

  43. Torres A, Reyes A, Roca J et al. (1989) Ventilation-perfusion mismatching in chronic obstructive pulmonary disease during ventilator weaning. Am Rev Respir Dis. 140: 1246–50

    PubMed  CAS  Google Scholar 

  44. Teboul JL, Abrouk F, Lemaire F (1988) Right ventricular function in COPD patients during weaning from mechanical ventilation. Intensive Care Med. 14 Suppl 2: 483–5

    PubMed  Google Scholar 

  45. De Backer D, El Haddad P, Preiser JC, Vincent JL (2000) Hemodynamic responses to successful weaning from mechanical ventilation after cardiovascular surgery. Intensive Care Med. 26: 1201–6

    Article  PubMed  Google Scholar 

  46. Zakynthinos S, Routsi C, Vassilakopoulos T et al. (2005) Differential cardiovascular responses during weaning failure: effects on tissue oxygenation and lactate. Intensive Care Med. 31: 1634–42

    Article  PubMed  Google Scholar 

  47. Richard C, Teboul JL. Weaning failure from cardiovascular origin (2005) Intensive Care Med. 31: 1605–7

    Article  PubMed  Google Scholar 

  48. Paulus S, Lehot JJ, Bastien O et al. (1994) Enoximone and acute left ventricular failure during weaning from mechanical ventilation after cardiac surgery. Crit Care Med. 22: 74–80

    PubMed  CAS  Google Scholar 

  49. Adamopoulos C, Tsagourias M, Arvaniti K et al. (2005) Weaning failure from mechanical ventilation due to hypertrophic obstructive cardiomyopathy. Intensive Care Med. 31: 734–7

    Article  PubMed  Google Scholar 

  50. Demoule A, Lefort Y, Lopes ME, Lemaire F (2004) Successful weaning from mechanical ventilation after coronary angioplasty. Br J Anaesth. 93: 295–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag France

About this chapter

Cite this chapter

Monnet, X., Lamia, B., Teboul, JL. (2006). Interactions cœur-poumons. In: L’insuffisance cardiaque aiguë. Le point sur.... Springer, Paris. https://doi.org/10.1007/978-2-287-34066-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-34066-6_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-34065-9

  • Online ISBN: 978-2-287-34066-6

Publish with us

Policies and ethics