Skip to main content

Acides gras poly-insaturés, phospholipides et fonctions membranaires

  • Chapter
  • 1427 Accesses

Abstrait

Les acides gras constituent la composante majeure des matières grasses chez les eucaryotes. Ils se répartissent en trois grands groupes: acides gras saturés (AGS) sans double liaison, acides gras mono-insaturés (AGMI) avec une double liaison et acides gras poly-insaturés (AGPI), avec deux doubles liaisons ou plus. Les AGS et AGMI sont parfois considérés comme dénués de spécificité fonctionnelle à ľexclusion des processus de palmitoylation et de myristoylation, c’est-à-dire la liaison covalente ďun AGS (palmitique à 16 carbones ou myristique à 14 carbones) sur une protéine. Ce processus biologique ubiquitaire est impliqué dans de nombreuses fonctions membranaires (1). Il n’en va pas de même pour les AGPI dont le rôle fonctionnel spécifique est important et varié (localisation spécifique dans ľenvironnement protéique membranaire, médiateurs intracellulaires de la signalisation humorale ou des PPARs, messagers intercellulaires comme les prostaglandines et les leucotriènes, etc.). La plupart des tissus humains sont capables de synthétiser des AGS à partir de sucres ou ďacides aminés, et les AGMI à partir des AGS car ils possèdent une Δ9-désaturase.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Resh MD (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37: 217–32

    PubMed  CAS  Google Scholar 

  2. Burr GO, Burr MM (1929) A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 82: 345–67

    CAS  Google Scholar 

  3. Lemarchal P, Bourre JM, Darcet P et al. (1992) Apports nutritionnels conseillées en acides gras essentiels. In: Apports Nutritionnels Conseillés la Population Française (H Dupin, J Abraham, I Giachetti Eds) 2e édition, Lavoisier, Paris, France, 74–84

    Google Scholar 

  4. McMurchie EJ, Patten GS et al. (1988) The influence of dietary lipid supplementation on cardiac β-adrenergic receptor adenylate cyclase activity in the marmoset monkey. Biochim Biophys Acta 937: 347–58

    Article  PubMed  CAS  Google Scholar 

  5. Demandre C, Tremolières A, Justie AM, Mazliak P (1986) Oleate desaturation in six phosphatidylcholine molecular species from potato tuber microsomes. Biochim Biophys Acta 877: 380–6

    CAS  Google Scholar 

  6. Neuringer M, Anderson GJ, Connor WE (1988) The essentiallity of n−3 fatty acids for the development and function of retina and brain. Ann Rev Nutr 8: 517–541

    Article  CAS  Google Scholar 

  7. Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to long-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45: 581–97

    Article  PubMed  CAS  Google Scholar 

  8. Uauy R, Birch E, Birch D, Periano P (1992) Visual and brain function measurements in studies of n−3 fatty acid requirements in infants. J Pediatr 120: 168–80

    Article  Google Scholar 

  9. Karleskind A, Wolff JP (1992) Manuel des Corps Gras. Technique et Documentation Lavoisier, Paris

    Google Scholar 

  10. Dubnov G, Berry EM (2003) Omega-6/omega-3 fatty acid ratio: the Israeli paradox. World Rev Nutr Diet 92: 81–91

    Article  PubMed  CAS  Google Scholar 

  11. Bjerve KS, Mosted IL, Thoresen L (1987) A-linolenic acid deficiency in patients on long-term gastric tube feeding: estimation of linolenic acid and long chain unsaturated n−3 fatty acid requirements in man. Am J Clin Nutr 45: 66–77

    PubMed  CAS  Google Scholar 

  12. Guesnet P, Alessandri JM, Durand G (1993) Métabolisme, fonctions biologiques et importance nutritionnelle des acides gas polyinsaturés. Cah Nutr Diet 28: 19–25

    CAS  Google Scholar 

  13. Kinsella JE (1991) α-linolenic acid: functions and effects on linoleic acid metabolism and eicosanoid-mediated reactions. In: Advances in Food and Nutrition Research, JE Kinsella (Ed), Academic Press, San Diego, USA, 35: 1–185

    Google Scholar 

  14. Martin JC, Bougnoux P, Fignon A et al. (1993) Dependance of human milk essential fatty acids on adipose store during lactation. Am J Clin Nutr, 58: 653–9

    PubMed  CAS  Google Scholar 

  15. Brenner RR (2003) Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids 68: 151–62

    Article  PubMed  CAS  Google Scholar 

  16. Gruppo Italiano per lo Studio della Sopravvivenza nelľInfarto miocardico (1999) Dietary supplementation with n−3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354: 447–55

    Article  Google Scholar 

  17. Delarue J, LeFoll C, Corporeau C, Lucas D (2004) N−3 long chain polyunsaturated fatty acids: a nutritional tool to prevent insulin resistance associated to type 2 diabetes and obesity? Reprod Nutr Dev 44: 289–99

    Article  PubMed  CAS  Google Scholar 

  18. Tricon S, Burdge GC, Williams CM et al. (2005) The effects of conjugated linoleic acid on human health-related outcomes. Proc Nutr Soc 64: 171–82

    Article  PubMed  CAS  Google Scholar 

  19. Mensink RP (2005) Metabolic and health effects of isomeric fatty acids. Curr Opin Lipido 116: 27–30

    Article  Google Scholar 

  20. Leyton J, Drury PJ, Crawford MA (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Brit J Nutr 57: 382–93

    Article  Google Scholar 

  21. Osmundsen H, Bremer J, Pedersen JI (1991) Metabolic aspects of peroxisomal β-oxidation. Biochem Biophys Acta 1085: 141–58

    PubMed  CAS  Google Scholar 

  22. Schulz H (2002) Oxidation of fatty acids in eukaryotes. In: Biochemistry of lipids, lipoproteins and membranes, 4e edition. Vance DE and Vance JE (Eds), New comprehensive biochemistry vol 36, Elsevier, Amsterdam, 127–50

    Google Scholar 

  23. Reddy JK, Hashimoto T (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21: 193–230

    Article  PubMed  CAS  Google Scholar 

  24. Sprecher H (1981) Biochemistry of essential fatty acids. Prog Lip Res 20: 13–22

    Article  CAS  Google Scholar 

  25. Brenner RR (1989) Factors affecting chain elongation and desaturation. In: The role of fat in human nutrition, AJ Vergrossen, MA Crawford (Eds), Academic Press, San Diego, p 45–80

    Google Scholar 

  26. Holloway PW (1972) A requirement for three protein components in microsomal stearoyl-CoA desaturation. Biochemistry 11: 3689–95

    Article  PubMed  CAS  Google Scholar 

  27. Brenner RR, Peluffo RO (1966) Effects of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids. J Biol Chem 241 5213–9

    PubMed  CAS  Google Scholar 

  28. Emken EA, Adlof RO, Rakoff H et al. (1990) Metabolism in vivo of deuterium-labelles linolenic and linoleic acid in humans. Biochem Soc Trans 18: 766–9

    PubMed  CAS  Google Scholar 

  29. Bjerve KS, Thoresen L, Bonaa R et al. (1992) Clinical studies with α-linolenic acid and long chain n−3 fatty acids. Nutrition 8: 130–2

    PubMed  CAS  Google Scholar 

  30. El Boustani S, Descomps B, Monnier L et al. (1986) In vivo conversion of dihomo-γ-linolenic acid into arachidonic acid in man. erog Lip Res 25: 67–71

    Article  Google Scholar 

  31. Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7,10,13,16,19-docosapentaenoic acid to 6,e,10, 13,16,19-docosahexaenoic in rat liver is dependant on an Δ−4 desaturase. J Biol Chem 266: 19995–20000

    PubMed  CAS  Google Scholar 

  32. Geiger M, Mohammed BM, Sankarappa S, Sprecher H (1993) Studies to determine if rat liver contains chain length-specific acylCoA 6-desaturases. Biochim Biophys Acta 1170: 137–42

    PubMed  CAS  Google Scholar 

  33. Bezard J, Blond JP, Bernard A, Clouet P (1994) The metabolism and availability of essential fatty acids in animal and human tissues. Reprod Nutr Dev 34: 539–68

    Article  PubMed  CAS  Google Scholar 

  34. Holman RT, Johnson S (1981) Changes in essential fatty acid profile of serum phospholipids in human disease. Prog Lip Res 20: 67–73

    Article  CAS  Google Scholar 

  35. Brenner RR, Garda H, de Gomez Dumm INT, Pezzano H (1981) Early effects of EFA deficiency on the structure and enzymic activity of liver microsomes. Prog Lip Res 20: 315–21

    Article  CAS  Google Scholar 

  36. Cook HW, McMaster CR (2002) Fatty acid desaturation and chain elongation in eukaryotes. In: Biochemistry of lipids, lipoproteins and membranes, 4th edition, Vance DE et Vance JE (Eds) New comprehensive biochemistry vol 36, Elsevier, Amsterdam, p 181–204

    Google Scholar 

  37. Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779: 89–137

    PubMed  CAS  Google Scholar 

  38. Kennedy EP (1958) The biosynthesis of phospholipids. Am J Clin Nutr 6: 216–20

    PubMed  CAS  Google Scholar 

  39. Lands WEM, Crawford CG (1976) The Enzymes of Biological Membranes, Vol 2 (A Martonosi, Ed), Plenum Press, New York

    Google Scholar 

  40. MacDonald JIS, Sprecher H (1991) Phospholipid fatty acid remodelling in mammalian cells. Biochim Biophys Acta 1084: 105–21

    PubMed  CAS  Google Scholar 

  41. Vance DE (2002) Phospholipid biosynthesis in eukaryotes. In: Biochemistry of lipids, lipoproteins and membranes, 4th edition (Vance DE et Vance JE Eds), New comprehensive biochemistry vol 36, Elsevier, Amsterdam, p 205–32

    Google Scholar 

  42. Zelinski TA, Savard JD, Man RYK, Choy PC (1980) Phosphatidylcholine biosynthesis in isolated hamster heart. J Biol Chem 225: 11423–8

    Google Scholar 

  43. Kuwae T, Schmid PC, Johnson B, Schmid HHO (1990) Differential turnover of phospholipid acyl groups in mouse peritoneal macrophages. J Biol Chem 265: 5002–7

    PubMed  CAS  Google Scholar 

  44. McMurchie EJ (1988) Dietary lipids and the regulation of membrane fluidity and function. dans Advances in membrane fluidity, vol 3, Physiological regulation of membrane fluidity, Aloia RC, Curtain CC and Gordon LH (Eds), Alan R Liss Inc, New York, p 189–237

    Google Scholar 

  45. Benediksdottir VE, Gubdjarnason S (1988) Effects of ageing and adrenergic stimulation on α1 and ß-adrenoceptors and phospholipid, fatty acids in rat heart. J Lipid Res 29: 765–72

    Google Scholar 

  46. Ohkubo T, Jacob R, Rupp H (1992) Swimming changes vascular fatty acid composition and prostanoid generation of rats. Am J Physiol 262: H464–H471

    Google Scholar 

  47. Murphy MG (1990) Dietary fatty acids and membrane protein function. J Nutr Biochem 1: 68–79

    Article  PubMed  CAS  Google Scholar 

  48. Englund PT (1993) The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem 62: 121–38

    Article  PubMed  CAS  Google Scholar 

  49. Stahl WL, Harris WE (1986) Na+,K+ ATPase: Structure, function, and interactions with drugs. Adv Neurol 44: 681–93

    PubMed  CAS  Google Scholar 

  50. Grynberg A, Fournier A, Sergiel JP, Athias P (1996) Membrane DHA versus EPA and the beating function of the cardiomyocytes through the adrenergic receptors. Lipids 31: S205–S210

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Grynberg, A. (2007). Acides gras poly-insaturés, phospholipides et fonctions membranaires. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics