Skip to main content

Acides aminés (structure, essentialité, transport, métabolisme)

  • Chapter
Book cover Traité de nutrition artificielle de l’adulte
  • 1468 Accesses

Abstrait

Source ďénergie, précurseurs ďhormones et de médiateurs, les acides aminés sont surtout les éléments constitutifs des protéines, lesquelles ont un rôle fonctionnel ubiquitaire: les enzymes, les anticorps, les facteurs de la coagulation, de nombreuses hormones sont des peptides ou des protéines. En outre, les protéines interviennent dans la fonction contractile des muscles (actine, myosine), dans ľarchitecture du tissu conjonctif (collagène), dans le transport plasmatique des molécules hydrophobes (acides gras, hormones stéroïdiennes, etc.). Le pool des acides aminés et celui des protéines sont en équilibre dynamique. Les facteurs conditionnant cet équilibre sont le flux ďacides aminés à partir des protéines alimentaires et de leur synthèse de novo par catabolisme protéique endogène et réactions ďinterconversion, phénomènes très dépendants du flux interorganes ďacides aminés.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 419–48

    Google Scholar 

  2. Spolarics Z, Lang CH, Bagby GJ, Spitzer JJ (1991) Glutamine and fatty acid oxidation are the main sources of energy for Kupffer and endothelial cells. Am J Physiol 261: G185–90

    PubMed  CAS  Google Scholar 

  3. Ferenci P, Schafer DF, Pappas SC, Jones EA (1983) Inhibitory and excitatory amino acid neurotransmitters in hepatic coma. In: Kleinberger G, Deutsch E (ed) New Aspects Clin Nutr Basel, Karger, p 485

    Google Scholar 

  4. Grillo MA (1985) Metabolism and function of polyamines. Int J Biochem 17: 943–8

    Article  PubMed  CAS  Google Scholar 

  5. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathology and pharmacology. Pharmacol Rev 43: 109–42

    PubMed  CAS  Google Scholar 

  6. Feron O (1999) Nitric oxide regulation of tissue free radical injury. Curr Opin Clin Nutr Metab Care 2: 291–6

    Article  PubMed  CAS  Google Scholar 

  7. Bode-Boger SM, Boger RH, Kienke S et al. (1996) Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun 219: 598–603

    Article  PubMed  CAS  Google Scholar 

  8. Cynober L, Vasson M, Farges MC et al. (1993) Acides aminés et immunité. Nutr Clin Métabol 7: 183–9

    Article  Google Scholar 

  9. Moinard C, Cynober L, De Bandt JP (2005) Polyamines: Metabolism and implications in human diseases. Clin Nutr 24: 184–97

    Article  PubMed  CAS  Google Scholar 

  10. Millward DJ, Rivers JPW (1989) The need indispensable amino acids: the concept of the anabolic drive. Diabetes Metab Rev 5: 191–211

    PubMed  CAS  Google Scholar 

  11. Young VR, Pellett P (1985) Wheat protein in relation to protein requirements and availability of amino acids. Am J Clin Nutr 41: 1077–90

    PubMed  CAS  Google Scholar 

  12. Young VR (1995) The notion of essentiality revisited and adult amino acid requirements. In: Cynober L (ed) Amino acid metabolism in health and nutritional diseases. CRC Press, Boca Raton, p 191

    Google Scholar 

  13. Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract. J Parent Ent Nutr 9: 608–17

    Article  CAS  Google Scholar 

  14. Barbul A (1986) Arginine: Biochemistry, Physiology and Therapeutic implications. J Parent Ent Nutr 10: 227–38

    CAS  Google Scholar 

  15. Cynober L (1991) Lysine et nutrition humaine. Ann Biol Clin 49: 40–4

    CAS  Google Scholar 

  16. Ganapathy V, Inoue K, Prasad PD, Ganapathy ME (2004) Cellular uptake of amino acids: systems and regulation. In: Cynober L (ed) Metabolic and therapeutic aspects of amine acids in clinical nutrition. CRC Press, Boca Raton, p 63

    Google Scholar 

  17. Collarini EJ, Oxender DL (1987) Mechanisms of transport of amino acids across membranes. Annu Rev Nutr 7: 75–90

    Article  PubMed  CAS  Google Scholar 

  18. Souba WW, Pacitti AJ (1992) How amino acids get into cells: mechanisms, models, menus and mediators. J Parent Ent Nutr 16: 569–78

    CAS  Google Scholar 

  19. Ahmed A, Taylor PM, Rennie MJ (1990) Characteristics of glutamine transport in rat sarcolemmal vesicles from rat skeletal muscle. Am J Physiol 250: E284–9

    Google Scholar 

  20. Matthews DM (1975) Intestinal absorption of peptides. Physiol Rev 55: 537–608

    PubMed  CAS  Google Scholar 

  21. Schmitz J, Triadou N (1982) Digestion et absorption intestinales des peptides. Gastroentérol Clin Biol 6: 651–61

    PubMed  CAS  Google Scholar 

  22. Vasquez JA, Morse EL, Adibi SA (1985) Effect of starvation on amino acid and peptide transport and peptide hydrolysis in human. Am J Physiol 249: G563–6

    Google Scholar 

  23. Cynober L, Marcollet M (1994) Métabolisme des protéines. Encycl Méd Chir 10-375-A-10-12 pages

    Google Scholar 

  24. Mitthieux G (2001) New data and concepts on glutamine and glucose metabolism in the gut. Curr Opin Clin Nutr Metab Care 4: 267–71

    Article  Google Scholar 

  25. Cynober L, Coudray-Lucas C, Ziegler F et al. (1989) Métabolisme azoté chez le sujet sain. Nutr Clin Metabol 3: 87–101

    Google Scholar 

  26. Leverve X (2002) Réponse métabolique à ľagression, utilisation cellulaire des substrats, bases de la nutrition artificielle. In: Nitenberg G, Chiolero R, Leverve X (ed) Nutrition artificielle de ľadulte en réanimation. Elsevier, Paris, p 96

    Google Scholar 

  27. Leverve X (1988) Acides aminés et métabolisme des protéines. Bull Soc Franc Nutr Ent Parent 7: 1–6

    Google Scholar 

  28. Haussinger D, Von Dahl S (1995) Role of amino acids in the control of proteolysis. In: Cynober L (ed) Amino acid metabolism in health and nutritional diseases. CRC Press, Boca Raton, p 167

    Google Scholar 

  29. Cynober L (2004) Amino acid metabolism. In: Encyclopedia of Biological chemistry, volume 1. Elsevier Inc, New-York, p 90

    Google Scholar 

  30. Cynober L (2002) Plasma amino acid levels with a note on membrane transport: characteristics, regulation and metabolic significance. Nutrition 18: 761–6

    Article  PubMed  CAS  Google Scholar 

  31. Abumrad NN, Williams P, Frexes-Steed M et al. (1989) Interorgan metabolism of aminoacids in vivo. Diabetes Metab Rev 5: 213–26

    Article  PubMed  CAS  Google Scholar 

  32. Barrett EJ, Gusberg R, Ferrannini E et al. (1986) Amino acid and glucose metabolism in the postabsorptive state and following amino acid ingestion in the dog. Metabolism 35: 709–17

    Article  PubMed  CAS  Google Scholar 

  33. Battezzati A, Brillon DJ, Matthews DE (1993) Oxidation of glutamic acid by the splanchnic bed in humans. Am J Physiol 27: E848–54

    Google Scholar 

  34. Darmaun D (1990) Métabolisme de la glutamine in vivo chez ľhomme: implications pour la nutrition artificielle. Nutr Clin Metabol 4: 203–14

    Google Scholar 

  35. Elwyn DH, Parkh HC, Shoemaker WC (1968) Amino acid movements between gut liver and periphery in unanesthetized dogs. Am J Physiol 215: 1260–75

    PubMed  CAS  Google Scholar 

  36. Cynober L, Jourdan M, Aussel C et al. (2004) Sarcopénie des sujets âgés: libérez les acides aminés! Nutr Clin Metabol 18: 198–204

    CAS  Google Scholar 

  37. Cheng KN, Pacy PJ, Dworzak F et al. (1987) Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-(1-13C, 15N) leucine as the tracer. Clin Sci 73: 241–6

    PubMed  CAS  Google Scholar 

  38. Hutson SM, Sweatt AJ, Lanoue KF (2005) Branched-chain amino acid metabolism: implications for establishing safe intakes. J Nutr 135 suppl. 6: 1557–64 S

    Google Scholar 

  39. Minet-Quinard R, Moinard C, Villie F et al. (2004) Metabolic pathways implicated in the kinetic impairment of muscle glutamine homeostasis in adult and old glucocorticoid-treated rats. Am J Physiol (Endocrinol Metab) 287: 671–6

    Article  Google Scholar 

  40. Rennie MJ, Babij P, Taylor PM et al. (1986) Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection and chronic disease. Lancet ii: 1008–12

    Article  Google Scholar 

  41. Newsholme EA, Newshorme P, Curi P et al. (1988) A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4: 261–8

    Google Scholar 

  42. Rabier D, Leverve X, Lissac J (1993) Foie et métabolisme azoté. Interrelations avec ľéquilibre acido-basique. Réanim Urg 2: 90–6

    Article  Google Scholar 

  43. Meijer AJ, Lamers WH, Chamuleau RAFM (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70: 701–48

    PubMed  CAS  Google Scholar 

  44. De Bandt JP, Cynober L, Ballet F et al. (1990) Amino acid metabolism in isolated perfused rat liver. J Surg Res 49: 8–13

    Article  PubMed  Google Scholar 

  45. Curis E, Nicolis I, Moinard C et al. (2005) Almost all about citrulline in mammals. Amino Acids 29: 177–205

    Article  PubMed  CAS  Google Scholar 

  46. Meijer AJ (2004) Ureagenesis and ammoniagenesis: an update. In: Cynober L (ed) Metabolic and therapeutic aspects of amino acids in clinical nutrition. CRC Press, Boca Raton, p 111

    Google Scholar 

  47. Davis EJ, Lee SHC (1985) Amino acid metabolism by perfused rat hindquarters. Effects of insulin, leucine and 2-chloro-4-methylvarate. Biochem J 229: 19–29

    PubMed  CAS  Google Scholar 

  48. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80: 1–6

    PubMed  CAS  Google Scholar 

  49. Millward DJ (1990) The hormonal control of protein turnover. Clin Nutr 9: 115–26

    Article  PubMed  CAS  Google Scholar 

  50. Wernerman J (2004) Control of amino acid metabolism by counterregulatory hormones. In: Cynober L (ed) Metabolic and therapeutic aspects of amino acids in clinical nutrition. CRC Press, Boca Raton, p 201

    Google Scholar 

  51. Miles JM, Nissen SL, Gerich JE, Haymond MW (1984) Effects of epinephrine infusion on leucine and alanine kinetics in humans. Am J Physiol 247: E166–72

    PubMed  CAS  Google Scholar 

  52. Cynober L, De Bandt JP, Lim SK, Giboudeau J (1992) Cytokines et métabolisme protéique. Cah Nutr Diet 27: 224–8

    CAS  Google Scholar 

  53. Adibi SA (1980) Roles of branched-chain amino acids in metabolic regulation. J Lab Clin Med 95: 475–84

    PubMed  CAS  Google Scholar 

  54. Leverve XM, Caro LHP, Plomb PJAM, Meijer AJ (1987) Control of proteolysis in perfused rat hepatocytes. FEBS Lett 219: 455–8

    Article  PubMed  CAS  Google Scholar 

  55. Mortimore GE, Poso AR, Lardeux BR (1989) Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev 5: 49–70

    PubMed  CAS  Google Scholar 

  56. Kimball SR, Jefferson LS (2006) Signalling pathways and molecular mechanisms through which branched-chain amino acids mediates translation control of protein synthesis. J. Nutr 136 suppl: 227–31 S

    Google Scholar 

  57. Cynober L (2006) Acides aminés possédant des propriétés pharmacologiques: de ľempirisme à la clarification des cibles moléculaires. Nutr Clin Metabol: sous presse

    Google Scholar 

  58. Hall JC, Mc Cauley R (1996) Glutamine. Brit J Surg 83: 305–12

    Article  PubMed  CAS  Google Scholar 

  59. Haussinger D, Roth E, Lang F, Gerok W (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341: 1330–2

    Article  PubMed  CAS  Google Scholar 

  60. Mortimore GE, Poso AR, Lardeux BR (1989) Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev 5: 49–70

    PubMed  CAS  Google Scholar 

  61. Rhoads JM, Argenzio RA, Chen W et al. (1997) L-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 272: G943–53

    PubMed  CAS  Google Scholar 

  62. Wischmeyer PE (2006) Glutamine: the first clinically relevant pharmacological regulator of heat stock protein expression? Curr Opin Clin Nutr Metab Care 9: 201–6

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Cynober, L. (2007). Acides aminés (structure, essentialité, transport, métabolisme). In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_5

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics