Skip to main content
  • 1432 Accesses

Abstrait

Le glucose représente ľune des principales sources ďénergie pour la cellule, en particulier pour les neurones cérébraux (1). Le glucose est stocké sous forme de glycogène, dans le foie et le muscle, lorsqu’il est apporté en excès des besoins en période postprandiale. Le glycogène est la forme de stockage ďénergie la plus rapidement mobilisable lors du jeûne, de ľexercice et de ľagression aiguë. Ľhoméostasie glucidique est soumise à une régulation très fine qui permet le maintien de la glycémie dans des limites relativement étroites malgré des apports habituellement fractionnés rythmés par les repas, et les variations parfois importantes de ľétat métabolique. Cette régulation permet ďéviter les conséquences délétères de ľhyperglycémie chronique (glycosylation) ou de ľhypoglycémie (neuroglycopénie). Dans ce chapitre, nous traiterons essentiellement les aspects physiologiques concernant le métabolisme du glucose. Les bases biochimiques de certaines voies métaboliques pourront être consultées dans des traités de biochimie et/ou des revees générales spécifiques. Le métabolisme des glucides complexes ne sera pas abordé.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Scheinberg P, Stead EA (1949) The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effects of tilting and anxiety. J Clin Invest 28: 1163–71

    PubMed  CAS  Google Scholar 

  2. Regittnig W, Ellmerer M, Fauler G, i. (2003) Assessment of transcapillary glucose exchange in human skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 285: e241–51

    PubMed  CAS  Google Scholar 

  3. Andres R, Baltzan MA, Calder G, Zierler KL (1962) Effect of insulin on carbohydrate metabolism and on potassium in the forearm of man. J Clin Invest 41: 108–15

    PubMed  CAS  Google Scholar 

  4. Somogyi M (1948) Studies of arteriovenous differences in blood sugar. I. Effect of alimentary hyperglycemia on the rate of extrahepatic glucose assimilation. J. Biol. Chem. 174: 189–200

    CAS  PubMed  Google Scholar 

  5. Ziel FH, Venkatesan N, Davidson MB (1988) Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37: 885–90

    Article  PubMed  CAS  Google Scholar 

  6. Bouché C, Serdy S, Kahn CR, Goldfine AB (2004) The cellular fate of glucose and its relevance in type 2 diabetes. Endocrine Reviews 25: 807–30

    Article  PubMed  CAS  Google Scholar 

  7. Wright EM, Martin MG, Turk E (2003) Intestinal absorption in health and disease sugars. Best Pract Res Clin Gastroenterol 17: 943–56

    Article  PubMed  CAS  Google Scholar 

  8. Drozdowski LA, Thomson AB (2006) Intestinal sugar transport. World J Gastroenterol 12: 1657–70

    PubMed  CAS  Google Scholar 

  9. Rao MC (2004) Oral rehydration therapy: new explanations for an old remedy. Annu Rev Physiol 66: 385–417

    Article  PubMed  CAS  Google Scholar 

  10. Joost HG, Bell GI, Best JD et al. (2002) Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282: E974–6

    PubMed  CAS  Google Scholar 

  11. Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3: 267–77

    Article  PubMed  CAS  Google Scholar 

  12. Postic C, Dentin R, Girard J (2004) Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 30: 398–408

    Article  PubMed  CAS  Google Scholar 

  13. Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87: 81–6

    Article  PubMed  CAS  Google Scholar 

  14. Landau BR (2001) Methods for measuring glycogen cycling. Am J Physiol Endocrinol Metab 281: E413–9

    PubMed  CAS  Google Scholar 

  15. Roden M, Petersen KF, Shulman GI. (2001) Nuclear magnetic resonance studies of hepatic glucose metabolism in humans. Recent Prog Horm Res 56: 219–37

    Article  PubMed  CAS  Google Scholar 

  16. Boden G (2004) Gluconeogenesis and glycogenolysis in health and diabetes. J Investig Med 52: 375–8

    Article  PubMed  Google Scholar 

  17. Rajas F, Bruni N, Montano S et al. (1999) The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology 117: 132–9

    Article  PubMed  CAS  Google Scholar 

  18. Mithieux G (2005) The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care 8: 445–9

    Article  PubMed  CAS  Google Scholar 

  19. Mithieux G, Rajas F, Gautier-Stein A (2004) A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis. J Biol Chem 279: 44231–4

    Article  PubMed  CAS  Google Scholar 

  20. Rizza RA, Mandarino LJ, Gerich JE (1981) Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 240: E630–9

    PubMed  CAS  Google Scholar 

  21. Petersen KF, Laurent D, Rothman DL et al. (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101: 1203–9

    PubMed  CAS  Google Scholar 

  22. Girard J (2006) Insulin’s effect on the liver: «direct or indirect?» continues to be the question. J Clin Invest 116: 302–4

    Article  PubMed  CAS  Google Scholar 

  23. Edgerton DS, Lautz M, Scott M, et al. (2006) Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 116: 521–7

    Article  PubMed  CAS  Google Scholar 

  24. Caumo A, Luzi L (2004) First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab 287: E371–85

    Article  PubMed  CAS  Google Scholar 

  25. Luzi L, DeFronzo RA (1989) Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol 257: E241–6

    PubMed  CAS  Google Scholar 

  26. Calles-Escandon J, Robbins DC (1987) Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose. Diabetes 36: 1167–72

    Article  PubMed  CAS  Google Scholar 

  27. Paolisso G, Scheen AJ, Albert A, Lefebvre PJ (1989) Effects of pulsatile delivery of insulin and glucagon in humans. Am J Physiol 257: E686–96

    PubMed  CAS  Google Scholar 

  28. Magnusson I, Rothman DL, Gerard DP et al. (1995) Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes 44: 185–9

    Article  PubMed  CAS  Google Scholar 

  29. Tappy L, Chiolero R, Berger M (1999) Autoregulation of glucose production in health and disease. Curr Opin Clin Nutr Metab Care 1999: 161–4

    Article  Google Scholar 

  30. Delarue J, Normand S, Pachiaudi C et al. (1993) The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia 36: 338–45

    Article  PubMed  CAS  Google Scholar 

  31. Dirlewanger M, Schneiter P, Jequier E et al. (2000) Effects of fructose on hepatic glucose metabolism in humans. Am J Physiol Endocrinol Metab 279: E907–11

    PubMed  CAS  Google Scholar 

  32. Zierler K (1999) Whole body glucose metabolism. Am J Physiol 276: E409–26

    PubMed  CAS  Google Scholar 

  33. Landau BR (1999) Quantifying the contribution of gluconeogenesis to glucose production in fasted human subjects using stable isotopes. Proc Nutr Soc 58: 963–72

    Article  PubMed  CAS  Google Scholar 

  34. Cahill GF (1970) Starvation in man. N Engl J Med 282: 668–75

    Article  PubMed  CAS  Google Scholar 

  35. Owen OE, Caprio S, Reichard GA et al. (1983) Ketosis of starvation: a revisit and new perspectives. Clin Endocrinol Metab 12: 359–79

    Article  PubMed  CAS  Google Scholar 

  36. Ungar I, Gilbert M, Siegel A et al. (1955) Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes. Am J Med 18: 385–96

    Article  PubMed  CAS  Google Scholar 

  37. Bing RJ, Siegel A, Ungar I, Gilbert M (1954) Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med 16: 504–15

    Article  PubMed  CAS  Google Scholar 

  38. Andres R, Cader G, Zierler KL (1956) The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest 35: 671–82

    PubMed  CAS  Google Scholar 

  39. Shulman GI, Rothman DL, Jue T et al. (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322: 223–8

    Article  PubMed  CAS  Google Scholar 

  40. Vuilleumier S (1993) Worldwide production of high-fructose syrup and crystalline fructose. Am J Clin Nutr 58: 733S–36S

    PubMed  CAS  Google Scholar 

  41. Skoog SM, Bharucha AE (2004) Dietary fructose and gastrointestinal symptoms: a review. Am J Gastroenterol 99: 2046–50

    Article  PubMed  CAS  Google Scholar 

  42. Polonsky KS, Sturis J, Van Cauter E (1998) Temporal profiles and clinical significance of pulsatile insulin secretion. Horm Res 49: 178–84

    Article  PubMed  CAS  Google Scholar 

  43. Porksen N (2002) The in vivo regulation of pulsatile insulin secretion. Diabetologia 45: 3–20

    Article  PubMed  CAS  Google Scholar 

  44. Nauck MA, Homberger E, Siegel EG et al. (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63: 492–8

    Article  PubMed  CAS  Google Scholar 

  45. Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287: E199–206

    Article  PubMed  CAS  Google Scholar 

  46. Vilsboll T, Krarup T, Madsbad S et al. (2003) Holst JJ. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 114: 115–21

    Article  PubMed  CAS  Google Scholar 

  47. Nauck MA, Bartels E, Orskov C et al. (1993) Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 76: 912–7

    Article  PubMed  CAS  Google Scholar 

  48. Tissot S, Normand S, Guilluy R et al. (1990) Use of a new gas chromatograph isotope ratio mass spectrometer to trace exogenous 13C labelled glucose at a very low level of enrichment in man. Diabetologia 33: 449–56. Erratum in: Diabetologia 1991

    Article  PubMed  CAS  Google Scholar 

  49. Delarue J, Couet C, Cohen R et al. (1996) Effects of fish oil on metabolic responses to oral fructose and glucose loads in healthy humans. Am J Physiol 270: E353–62

    PubMed  CAS  Google Scholar 

  50. DeFronzo RA, Ferrannini E, Hendler R et al. (1982) Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes 32: 35–45

    Google Scholar 

  51. Roden M, Bernroider E (2003) Hepatic glucose metabolism in humans — its role in health and disease. Best Pract Res Clin Endocrinol Metab 17: 365–83

    Article  PubMed  CAS  Google Scholar 

  52. Moore MC, Cherrington AD, Wasserman DH (2003) Regulation of hepatic and peripheral glucose disposal. Best Pract Res Clin Endocrinol Metab 17: 343–64

    Article  PubMed  CAS  Google Scholar 

  53. Fery F, Tappy L, Deviere J, Balasse EO (2004) Comparison of intraduodenal and intravenous glucose metabolism under clamp conditions in humans. Am J Physiol Endocrinol Metab 286: E176–83

    Article  PubMed  CAS  Google Scholar 

  54. Little TJ, Pilichiewicz AN, Russo A et al. (2006) Effects of intravenous glucagon-like Peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab 91: 1916–23

    Article  PubMed  CAS  Google Scholar 

  55. Guidobono F (1998) Amylin and gastrointestinal activity. Gen Pharmacol. 31: 173–7

    Article  PubMed  CAS  Google Scholar 

  56. Holloszy JO (2003) A forty-year memoir of research on the regulation of glucose transport into muscle. Am J Physiol Endocrinol Metab 284: E453–67

    PubMed  CAS  Google Scholar 

  57. Dugani CB, Klip A (2005) Glucose transporter 4: cycling, compartments and controversies. EMBO Rep 6: 1137–42

    Article  PubMed  CAS  Google Scholar 

  58. Chang L, Chiang SH, Saltiel AR (2004) Insulin signaling and the regulation of glucose transport. Mol Med 10: 65–71

    PubMed  CAS  Google Scholar 

  59. Ishiki M, Klip A (2005) Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146: 5071–8

    Article  PubMed  CAS  Google Scholar 

  60. Thong FS, Dugani CB, Klip A (2005) Turning signals on and off: GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda) 20: 271–84

    CAS  Google Scholar 

  61. Watson RT, Kanzaki M, Pessin JE (2004) Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 25: 177–204

    Article  PubMed  CAS  Google Scholar 

  62. Baron AD, Brechtel G, Wallace P, Edelman SV (1988) Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in humans. Am J Physiol 255: E769–74

    PubMed  CAS  Google Scholar 

  63. Kelley DE, Williams KV, Price JC (1999) Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET. Am J Physiol 277: E361–9

    PubMed  CAS  Google Scholar 

  64. Fueger PT (2005) Glucose phosphorylation as a barrier to muscle glucose uptake. Clin Exp Pharmacol Physiol 32: 314–8

    Article  PubMed  CAS  Google Scholar 

  65. Yki-Jarvinen H, Utriainen T (1998) Insulin-induced vasodilatation: physiology or pharmacology? Diabetologia 41: 369–79

    Article  PubMed  CAS  Google Scholar 

  66. Utriainen T, Malmstrom R, Makimattila S, Yki-Jarvinen H (1995) Methodological aspects, dose-response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia 38: 555–64

    PubMed  CAS  Google Scholar 

  67. Raitakari M, Nuutila P, Ruotsalainen U et al. (1996) Evidence for dissociation of insulin stimulation of blood flow and glucose uptake in human skeletal muscle: studies using [15O]H2O, [18F]fluoro-2-deoxy-D-glucose, and positron emission tomography. Diabetes 45: 1471–7

    Article  PubMed  CAS  Google Scholar 

  68. Thiebaud D, Jacot E, DeFronzo RA et al. (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation and glucose storage in man. Diabetes 31: 957–63

    PubMed  CAS  Google Scholar 

  69. Kelley DE, Reilly JP, Veneman T, Mandarino LJ (1990) Effects of insulin on skeletal muscle glucose storage, oxidation and glycolysis in humans. Am J Physiol 258: E923–E929

    PubMed  CAS  Google Scholar 

  70. Shulman GI, Douglas PD, Rothman DL et al. (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322: 223–8

    Article  PubMed  CAS  Google Scholar 

  71. DeFronzo RA, Jacot E, Jéquier E et al. (1981) The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30: 1000–7

    PubMed  CAS  Google Scholar 

  72. Kelley D, Mitrakou A, Marsh H et al. (1988) Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest 81: 1563–71

    PubMed  CAS  Google Scholar 

  73. Marin P, Hogh-Kristiansen I, Jansson S et al. (1992) Uptake of glucose carbon in muscle glycogen and adipose tissue triglycerides in vivo in humans. Am J Physiol 263: E473–80

    PubMed  CAS  Google Scholar 

  74. Marin P, Rebuffe-Scrive M, Smith U, Bjorntorp P (1987) Glucose uptake in human adipose tissue. Metabolism 36: 1154–60

    Article  PubMed  CAS  Google Scholar 

  75. Moeri R, Golay A, Schutz Y et al. (1988) Oxidative and non oxidative glucose metabolism following graded doses of oral glucose in man. Diabète Métab 14: 1–7

    PubMed  CAS  Google Scholar 

  76. Van den Berghe G (1986) Fructose: metabolism and short-term effects on carbohydrate and purine metabolic pathways. Prog Biochem Pharmacol 21: 1–32

    PubMed  Google Scholar 

  77. Delarue J, Maingourd C, Lamisse F et al. (1994) Glucose oxidation after a peritoneal and an oral glucose load in dialyzed patients. Kidney Int 45: 1147–52

    Article  PubMed  CAS  Google Scholar 

  78. Lam TKT, Carpentier A, Lewis GF et al. (2003) Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 284: E863–E873

    PubMed  CAS  Google Scholar 

  79. Kovacs P, Stumvoll M (2005) Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 19: 625–35

    Article  PubMed  CAS  Google Scholar 

  80. Krebs M, roden M (2005) Molecular mechanisms of lipidinduced insulin resistance in muscle, liver and vasculature. Diabetes Obes Metab 7: 621–32

    Article  PubMed  CAS  Google Scholar 

  81. Roden M (2004) How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci. 19: 92–6

    PubMed  CAS  Google Scholar 

  82. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–9

    Article  PubMed  CAS  Google Scholar 

  83. Dresner A, Laurent D, Marcucci M et al. (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103: 253–9

    Article  PubMed  CAS  Google Scholar 

  84. Delarue J, Labarthe F, Cohen R (2003) Fish-oil supplementation reduces stimulation of plasma glucose fluxes during exercise in untrained males. Br J Nutr 90: 777–86

    Article  PubMed  CAS  Google Scholar 

  85. Rose AJ, Richter EA (2005) Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology 20: 260–70

    Article  PubMed  CAS  Google Scholar 

  86. Wasserman DH (1995) Regulation of glucose fluxes during exercise in the postabsorptive state. Annu Rev Physiol 57: 191–218

    Article  PubMed  CAS  Google Scholar 

  87. Hardie DG (2004) AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc 36: 28–34

    Article  PubMed  CAS  Google Scholar 

  88. Coker RH, Kjaer M (2005) Glucoregulation during exercise: the role of the neuroendocrine system. Sports Med 35: 575–83

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Delarue, J. (2007). Glucides. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics