Skip to main content

Régulation de ľexpression génique par les macronutriments

  • Chapter
  • 1391 Accesses

Abstrait

Toutes les cellules adaptent leur métabolisme en réponse à des changements de leur environnement. Chez les organismes unicellulaires, des mécanismes spécifiques se sont développés afin de permettre à ces cellules de métaboliser des substrats énergétiques en fonction de leur disponibilité dans le milieu extérieur. Ainsi, la régulation nutritionnelle de la transcription de gènes codant des enzymes spécifiques du métabolisme est particulièrement bien caractérisée en ce qui concerne ľopéron lactose ďEscherichia coli ou le régulon galactose de Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Kaplan JC, Delpech M (1993) Biologie moléculaire et médecine. Paris, Flammarion Médecine-Sciences

    Google Scholar 

  2. Vaulont S, Munnich A, Decaux JF et al. (1986) Transcriptional and post-transcriptional regulation of L-type pyruvate kinase gene expression in rat liver. J Biol Chem 261: 7621–5

    PubMed  CAS  Google Scholar 

  3. Iynedijan PB, Ucla C, Mach B (1987) Molecular cloning of glucokinase cDNA. Developmental and dietary regulation of glucokinase mRNA in the rat liver. J. Biol. Chem. 262: 6032–8

    Google Scholar 

  4. Katsurada A, Iritani N, Fukuda H et al. (1990) Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. Eur. J Biochem 190: 427–33

    Article  PubMed  CAS  Google Scholar 

  5. Katsurada A, Iritani N, Fukuda H et al. (1990) Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur J Biochem 190: 435–41

    Article  PubMed  CAS  Google Scholar 

  6. Eberle D, Hegarty B, Bossard P et al. (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839–48

    Article  PubMed  CAS  Google Scholar 

  7. Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1 c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87: 81–6

    Article  PubMed  CAS  Google Scholar 

  8. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96: 11041–8

    Article  PubMed  CAS  Google Scholar 

  9. Brown MS, Ye J, Rawson RB et al. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–8

    Article  PubMed  CAS  Google Scholar 

  10. Shimomura I, Shimano H, Dorton JD et al. (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99: 838–45

    PubMed  CAS  Google Scholar 

  11. Horton JD, Shimomura I, Brown MS et al. (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101: 2331–9

    PubMed  CAS  Google Scholar 

  12. Shimano H, Horton JD, Shimomura I et al. (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99: 846–54

    PubMed  CAS  Google Scholar 

  13. Shimano H, Horton JD, Hammer RE et al. (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98: 1575–84

    Article  PubMed  CAS  Google Scholar 

  14. Foretz M, Pacot C, Dugail I et al. (1999) ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 19: 3760–8

    PubMed  CAS  Google Scholar 

  15. Shimomura I, Bashmakov Y, Ikemoto S et al. (1999) Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96: 13656–61

    Article  PubMed  CAS  Google Scholar 

  16. Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124: 35–46

    Article  PubMed  CAS  Google Scholar 

  17. Hegarty BD, Bobard A, Hainault I et al. (2005) Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc Natl Acad Sci USA 102: 791–6

    Article  PubMed  CAS  Google Scholar 

  18. Yabe D, Komuro R, Liang G et al. (2003) Liver-specific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci USA 100: 3155–60

    Article  PubMed  CAS  Google Scholar 

  19. Foretz M, Guichard C, Ferre P et al. (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci. USA 96: 12737–42

    Article  PubMed  CAS  Google Scholar 

  20. Becard D, Hainault I, Azzout-Marniche D et al. (2001) Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes 50: 2425–30

    Article  PubMed  CAS  Google Scholar 

  21. Liang G, Yang J, Horton JD et al. (2002) Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 277: 9520–8

    Article  PubMed  CAS  Google Scholar 

  22. Magana MM, Osborne TF (1996) Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem 271: 32689–94

    Article  PubMed  CAS  Google Scholar 

  23. Kim SY, Kim HI, Kim TH et al. (2004) SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 279: 30823–9

    Article  PubMed  CAS  Google Scholar 

  24. Doiron B, Cuif MH, Kahn A et al. (1994) Respective roles of glucose, fructose, and insulin in the regulation of the liver-specific pyruvate kinase gene promoter. J Biol Chem 269: 10213–6

    PubMed  CAS  Google Scholar 

  25. Prip-Buus C, Perdereau D, Foufelle F et al. (1995) Induction of fatty-acid synthase gene expression by glucose in primary culture of rat hepatocytes. Dependency upon glucokinase activity. Eur J Biochem 230: 309–15

    Article  PubMed  CAS  Google Scholar 

  26. Dentin R, Pégorier JP, Benhamed F et al. (2004) Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 279: 20314–26

    Article  PubMed  CAS  Google Scholar 

  27. Koo SH, Dutcher AK, Towle HC (2001) Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. J Biol Chem 276: 9437–45

    Article  PubMed  CAS  Google Scholar 

  28. Foufelle F, Gouhot B, Pégorier JP et al. (1992) Glucose stimulation of lipogeneic enzyme gene expression in cultured white adipose tissue. A role for glucose-6-phosphate. J. Biol. Chem. 267: 20543–6

    PubMed  CAS  Google Scholar 

  29. Brun T, Roche E, Kim KH et al. (1993) Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic ß cell line (INS-1). J Biol Chem 268: 18905–11

    PubMed  CAS  Google Scholar 

  30. Burcelin R, del Carmen Munoz M, Guillam MT et al. (2000) Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membrane-based glucose release pathway. J Biol Chem 275: 10930–6

    Article  PubMed  CAS  Google Scholar 

  31. Doiron B, Cuif MH, Chen R et al. (1996) Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. J Biol Chem 271: 5321–4

    Article  PubMed  CAS  Google Scholar 

  32. Nishimura M, Uyeda K (1995) Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate, 2-kinase: fructose-2,6-bisphosphatase. J Biol Chem 270: 26341–6

    Article  PubMed  CAS  Google Scholar 

  33. Vaulont S, Vasseur-Cognet M, Kahn A (2000) Glucose regulation of gene transcription. J Biol Chem 275: 31555–8

    Article  PubMed  CAS  Google Scholar 

  34. Yamashita H, Takenoshita M, Sakurai M et al. (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 98: 9116–21

    Article  PubMed  CAS  Google Scholar 

  35. Kawaguchi T, Takenoshita M, Kabashima T et al. (2001) Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci USA 98: 13710–5

    Article  PubMed  CAS  Google Scholar 

  36. Stoeckman AK, Ma L, Towle HC (2004) Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 279: 15662–9

    Article  PubMed  CAS  Google Scholar 

  37. Iizuka K, Bruick RK, Liang G et al. (2004) Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci US 101: 7281–6

    Article  CAS  Google Scholar 

  38. Eberle D, Clement K, Meyre D et al. (2004) SREBP-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Diabetes 53: 2153–7

    Article  PubMed  CAS  Google Scholar 

  39. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747–57

    Article  PubMed  Google Scholar 

  40. Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22: 325–46

    Article  PubMed  CAS  Google Scholar 

  41. Kushi L, Giovannucci E (2002) Dietary fat and cancer. Am J Med 113 Suppl 9B: 63S–70S

    Article  PubMed  CAS  Google Scholar 

  42. Iacomino G, Tecce MF, Grimaldi C et al. (2001) Transcriptional response of a human colon adenocarcinoma cell line to sodium butyrate. Biochem. Biophys. Res. Commun. 285: 1280–9

    Article  PubMed  CAS  Google Scholar 

  43. Tabuchi Y, Arai Y, Kondo T et al. (2002) Identification of genes responsive to sodium butyrate in colonic epithelial cells. Biochem. Biophys Res Commun 293: 1287–94

    Article  PubMed  CAS  Google Scholar 

  44. Sanderson IR (2004) Short chain fatty acid regulation of signaling genex expressed by the intestinal epithelium. J Nutr 134: 2450S–4S

    PubMed  CAS  Google Scholar 

  45. Sanderson IR, Naik S (2000) Dietary regulation of intestinal gene expression. Annu Rev Nutr 20: 311–38

    Article  PubMed  CAS  Google Scholar 

  46. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133: 2485S–93S

    PubMed  CAS  Google Scholar 

  47. Mei S, Ho AD, Mahlknecht U (2004) Role of histone deacetylase inhibitors in the treatment of cancer (Review). Int J Oncol 25: 1509–19

    PubMed  CAS  Google Scholar 

  48. Seo T, Blaner WS, Deckelbaum RJ (2005) Omega-3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol 16: 11–8

    Article  PubMed  CAS  Google Scholar 

  49. Jump DB, Clarke SD (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19: 63–90

    Article  PubMed  CAS  Google Scholar 

  50. Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13: 155–64

    Article  PubMed  CAS  Google Scholar 

  51. Lewin TM, Kim JH, Granger DA et al. (2001) Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem 276: 24674–9

    Article  PubMed  CAS  Google Scholar 

  52. Jump DB (2004) Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci 41: 41–78

    Article  PubMed  CAS  Google Scholar 

  53. Louet JF, Chatelain F, Decaux JF et al. (2001) Long-chain fatty acids regulate liver carnitine palmitoyltransferase I (L-CPT I)gene expression through a PPARa-independent pathway. Biochem. J. 354: 189–97

    Article  PubMed  CAS  Google Scholar 

  54. Pégorier JP (1998) Regulation of gene expression by fatty acids. Curr Opin Clin Nutr Metab Care 1: 329–34

    Article  PubMed  Google Scholar 

  55. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocrine Reviews 20: 649–88

    Article  PubMed  CAS  Google Scholar 

  56. Khan SA, Vanden Heuvel JP (2003) Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 14: 554–67

    Article  PubMed  CAS  Google Scholar 

  57. Pégorier J (2006) Nuclear Receptors and the control of gene expression by fatty acids. In: R Brigelius-Flohé, H Joost (ed) Nutritional Genomics. Wiley-VCH Verlag GmbH & KGaA, Weinheim, p 74–91

    Chapter  Google Scholar 

  58. Feng W, Ribeiro RC, Wagner RL et al. (1998) Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280: 1747–9

    Article  PubMed  CAS  Google Scholar 

  59. Nolte RT, Wisely GB, Westin S et al. (1998) Ligand binding and co-activator assembly of the peroxysome proliferator-activated receptor gamma. Nature 395: 137–43

    Article  PubMed  CAS  Google Scholar 

  60. Kee BL, Arias J, Montminy MR (1996) Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J Biol Chem 271: 2373–5

    Article  PubMed  CAS  Google Scholar 

  61. Xu L, Glass C, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9: 140–7

    Article  PubMed  CAS  Google Scholar 

  62. Berger A, Mutch DM, German JB, Roberts MA (2002) Unraveling lipid metabolism with microarrays: effects of arachidonate and docosahexaenoate acid on murine hepatic and hippocampal gene expression. Genome Biol 3: PREPRINT0004

    Google Scholar 

  63. Takahashi M, Tsuboyama-Kasaoka N, Nakatani T et al. (2002) Fish oil feeding alters liver gene expressions to defend against PPARalpha activation and ROS production. Am J Physiol Gastrointest Liver Physiol 282: G338–48

    PubMed  CAS  Google Scholar 

  64. Berthou L, Saladin R, Yaqoob P et al. (1995) Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II and acyl-CoA oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 232: 179–87

    Article  PubMed  CAS  Google Scholar 

  65. Duplus E, Glorian M, Forest C (2000) Fatty acid regulation of gene transcription. J Biol Chem 275: 30749–52

    Article  PubMed  CAS  Google Scholar 

  66. Pan DA, Mater MK, Thelen AP et al. (2000) Evidence against the peroxisome proliferator-activated receptor α (PPARα) as the mediator of polyunsaturated fatty acid supression of hepatic L-pyruvate kinase gene transcription. J Lipid Res 41: 742–51

    PubMed  CAS  Google Scholar 

  67. Ren B, Thelen AP, Peters JM et al. (1997) Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha. J Biol Chem 272: 26827–32

    Article  PubMed  CAS  Google Scholar 

  68. Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression and fatty acid regulation of the human delta-6 desaturase. J Biol Chem 274: 37335–9

    Article  PubMed  CAS  Google Scholar 

  69. Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression and nutritional regulation of the mammalian Δ-6 desaturase. J Biol Chem 274: 471–7

    Article  PubMed  CAS  Google Scholar 

  70. Le May C, Caüzac M, Diradourian C et al. (2005) Fatty acids induce L-CPT I gene expression through a PPARα-independent mechanism in rat hepatoma cells. J Nutr 135: 2313–9

    PubMed  Google Scholar 

  71. Peet DJ, Janowski BA, Mangelsdorf DJ (1998) The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev 8: 571–5

    Article  PubMed  CAS  Google Scholar 

  72. Li AC, Glass CK (2004) PPAR-and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 45: 2161–73

    Article  PubMed  CAS  Google Scholar 

  73. Ou J, Tu H, Shan B et al. (2001) Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA 98: 6027–32

    Article  PubMed  CAS  Google Scholar 

  74. Pawar A, Xu J, Jerks E et al. (2002) Fatty acid regulation of liver X receptors (LXR) and peroxisome proliferator-activated receptor alpha (PPARalpha) in HEK293 cells. J Biol Chem 277: 39243–50

    Article  PubMed  CAS  Google Scholar 

  75. Lu TT, Repa JJ, Mangelsdorf DJ (2001) Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem 276: 37735–8

    PubMed  CAS  Google Scholar 

  76. Cheema SK, Agellon LB (2000) The murine and human cholesterol 7alpha-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor alpha. J Biol Chem 275: 12530–6

    Article  PubMed  CAS  Google Scholar 

  77. Marrapodi M, Chiang JY (2000) Peroxisome proliferator-activated receptor alpha (PPARalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Lipid Res 41: 514–20

    PubMed  CAS  Google Scholar 

  78. Patel DD, Knight BL, Soutar AK et al. (2000) The effect of peroxisome-proliferator-activated receptor-alpha on the activity of the cholesterol 7 alpha-hydroxylase gene. Biochem J 351 Pt 3: 747–53

    Article  PubMed  CAS  Google Scholar 

  79. Hayhurst GP, Lee YH, Lambert G et al. (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21: 1393–403

    Article  PubMed  CAS  Google Scholar 

  80. Miquerol L, Lopez S, Cartier N et al. (1994) Expression of the L-type pyruvate kinase gene and the hepatocyte nuclear factor 4 transcription factor in exocrine and endocrine pancreas. J Biol Chem 269: 8944–51

    PubMed  CAS  Google Scholar 

  81. Sladek FM, Zhong W, Lai E et al. (1990) Liver enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Gene & Development 4: 2353–65

    Article  CAS  Google Scholar 

  82. Plengvidhya N, Antonellis A, Wogan LT et al. (1999) Hepatocyte nuclear factor-4gamma: cDNA sequence, gene organization, and mutation screening in early-onset autosomal-dominant type 2 diabetes. Diabetes 48: 2099–102

    Article  PubMed  CAS  Google Scholar 

  83. Hertz R, Magenheim J, Berman I et al. (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4α. Nature 392: 512–5

    Article  PubMed  CAS  Google Scholar 

  84. Hertz R, Seckbach M, Zakin MM et al. (1996) Transcriptional suppression of the transferrin gene by hypolipidemic peroxisome proliferations. J Biol Chem 271: 218–24

    Article  PubMed  CAS  Google Scholar 

  85. Worgall TS, Johnson RA, Seo T et al. (2002) Unsaturated fatty acid-mediated decreased in sterol regulatory element-mediated gene transcription are linked to cellular sphingolipid metabolism. J Biol Chem 277: 3878–85

    Article  PubMed  CAS  Google Scholar 

  86. Schultz JR, Tu H, Luk A et al. (2000) Role of LXRs in control of lipogenesis. Genes Dev 14: 2831–8

    Article  PubMed  CAS  Google Scholar 

  87. DeBose-Boyd RA, Ou J, Goldstein JL et al. (2001) Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc Natl Acad Sci USA 98: 1477–82

    Article  PubMed  CAS  Google Scholar 

  88. Dentin R, Benhamed F, Pégorier JP et al. (2005) Polyunsaturated fatty acids suppress glycolytic and lipogenic gene through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 115: 2848–54

    Article  CAS  Google Scholar 

  89. Uyeda K, Yamashita H, Kawaguchi T (2002) Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochem Pharmacol 63: 2075–80

    Article  PubMed  CAS  Google Scholar 

  90. Gao Z, Zhang X, Zuberi A et al. (2004) Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 18: 2024–34

    Article  PubMed  CAS  Google Scholar 

  91. Diradourian C, Girard P, Pégorier JP (2005) Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87: 33–8

    Article  PubMed  CAS  Google Scholar 

  92. Gelman L, Michalik L, Desvergne B et al. (2005) Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. Curr Opin Cell Biol 17: 1–7

    Article  CAS  Google Scholar 

  93. Haunerland NH, Spener F (2004) Fatty acid-binding proteins—insights from genetic manipulations. Prog Lipid Res 43: 328–49

    Article  PubMed  CAS  Google Scholar 

  94. Munro H (1970) Mammalian protein metabolism. Academic press, New-York & London

    Google Scholar 

  95. Rose WC (1957) The amino acid requirements of adult man. Nutr Abstr Rev Ser Hum Exp 27: 631–47

    PubMed  CAS  Google Scholar 

  96. Young V, El-Khoury A, Melchor S et al. (1994) The biochemistry and physiology of protein and amino acid metabolism with reference to protein nutrition. Nestlé Ltd-Raven Press, Vevey & New York

    Google Scholar 

  97. Leung PM, Rogers QR, Harper AE (1968) Effect of amino acid imbalance on dietary choice in the rat. J Nutr 95: 483–92

    PubMed  CAS  Google Scholar 

  98. Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50: 428–558

    PubMed  CAS  Google Scholar 

  99. Fafournoux P, Remesy C, Demigne C (1990) Fluxes and membrane transport of amino acids in rat liver under different protein diet. Am J Physiol 259: E614–25

    PubMed  CAS  Google Scholar 

  100. Proud CG (2002) Regulation of mammalian translation factors by nutrients. Eur J Biochem 269: 5338–49

    Article  PubMed  CAS  Google Scholar 

  101. Fafournoux P, Bruhat A, Jousse C (2000) Amino acid regulation of gene expression. Biochem J 351 1–12

    Article  PubMed  CAS  Google Scholar 

  102. Kilberg MS, Pan YX, Chen H et al. (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25: 59–85

    Article  PubMed  CAS  Google Scholar 

  103. Bruhat A, Jousse C, Wang XZ et al. (1997) Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem 272: 17588–93

    Article  PubMed  CAS  Google Scholar 

  104. Bruhat A, Jousse C, Carraro V et al. (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 20: 7192–204

    Article  PubMed  CAS  Google Scholar 

  105. Barbosa-Tessmann IP, Chen C, Zhong C et al. (2000) Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem 275: 26976–85

    PubMed  CAS  Google Scholar 

  106. Bain PJ, LeBlanc-Chaffin R, Chen H et al. (2002) The mechanism for transcriptional activation of the human ATA2 transporter gene by amino acid deprivation is different than that for asparagine synthetase. J Nutr 132: 3023–9

    PubMed  CAS  Google Scholar 

  107. Avenous J, Bruhat A, Jousse C et al. (2004) Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 279: 5288–97

    Google Scholar 

  108. Maekawa T, Sakura H, Kanei-Ishii C et al. (1989) Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8: 2023–8

    PubMed  CAS  Google Scholar 

  109. Karin M, Smeal T (1992) Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 17: 418–22

    Article  PubMed  CAS  Google Scholar 

  110. Kawasaki H, Schiltz L, Chiu R et al. (2000) ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405: 195–200

    Article  PubMed  CAS  Google Scholar 

  111. Hai TW, Liu F, Coukos WJ et al. (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3: 2083–90

    Article  PubMed  CAS  Google Scholar 

  112. Liang G, Hai T (1997) Characterization of human activating transcription factor 4, a transcriptional activator that interacts with multiple domains of cAMP-responsive element-binding protein (CREB)-binding protein. J Biol Chem 272: 24088–95

    Article  PubMed  CAS  Google Scholar 

  113. Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52: 248–73

    PubMed  CAS  Google Scholar 

  114. Berlanga JJ, Santoyo J, De Haro C (1999) Characterization of a mammalian homology of the GCN2 eukaryotic initiation, factor 2alpha kinase. Eur J Biochem 265: 754–62

    Article  PubMed  CAS  Google Scholar 

  115. Harding HP, Zhang Y, Zeng H et al. (2004) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619–33

    Article  Google Scholar 

  116. Dever TE, Feng L, Wek RC et al. (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68: 585–96

    Article  PubMed  CAS  Google Scholar 

  117. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167: 27–33

    Article  PubMed  CAS  Google Scholar 

  118. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–4

    Article  PubMed  CAS  Google Scholar 

  119. Koromilas AE, Roy S, Barber GN et al. (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257: 1685–9

    Article  PubMed  CAS  Google Scholar 

  120. Chen JJ, London IM (1995) Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem Sci 20: 105–8

    Article  PubMed  CAS  Google Scholar 

  121. Maurin AC, Jousse C, Averous J et al. (2005) The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1: 273–7

    Article  PubMed  CAS  Google Scholar 

  122. Maurin AC, Jousse C, Balage J et al. (2005) GCN2 regulates feeding behavior to maintain acid homeostasis in omnivores. Med Sci (Paris) 21: 799–801

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Pégorier, JP., Foufelle, F., Fafournoux, P. (2007). Régulation de ľexpression génique par les macronutriments. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_20

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics