Skip to main content
  • 1423 Accesses

Abstrait

Les éléments traces (ET), aussi appelés oligo-éléments, sont des nutriments sans valeur énergétique propre, constituant moins de 0,01% du poids corporel, mais dont la présence est essentielle au métabolisme. Dix-sept éléments traces ont des fonctions biologiques identifiées chez les mammifères (1), mais seuls les 12 éléments marqués ďun astérisque ci-après sont considérés comme essentiels chez ľêtre humain: arsenic, bore, chrome, cobalt, cuivre, étain, fer, fluor, iode, lithium, molybdène, manganèse, nickel, sélénium, silicium, vanadium et zinc. Ces ET ont comme caractéristique commune ďêtre des métaux ou des métalloïdes et de répondre à des critères précis (tableau I) (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. WHO (1996) Trace elements in human nutrition and health. Geneva: WHO.

    Google Scholar 

  2. Cotzias GC (1967) Importance of trace element substances in experimental health, as exemplified by manganese. In: Proceedings of the First Conference on Trace Substances in Environment and Health: 1967: 5–19.

    Google Scholar 

  3. Mertz W (1998) Chronium research from a distance: From 1959 to 1980. J Am Coll Nutr 17: 544–7

    PubMed  CAS  Google Scholar 

  4. Jeejeebhoy KN (1984) Zinc and chromium in parenteral nutrition. Bull NY Acad Med 60: 118–24

    CAS  Google Scholar 

  5. Food and Nutrition Board of the Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington DC: National Academy Press

    Google Scholar 

  6. Prasad AS (1995) Zinc: An overview. Nutrition 11: 93–9

    PubMed  CAS  Google Scholar 

  7. Barceloux DG (1999) Vanadium. Journal of Toxicology— J Toxicol Clin Toxicol 37: 265–78

    Article  CAS  Google Scholar 

  8. Rucker RB, Kosonen T, Clegg MS et al. (1998) Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr 67, 5 (Suppl): S996–S1002

    Google Scholar 

  9. Dhur A, Galan P, Hercberg S (1990) Effect of decreased food consumption during iron deficiency upon growth rate and iron status indicators in the rat. Ann Nutr Metab 34: 280–7

    Article  PubMed  CAS  Google Scholar 

  10. Meyer NA, Muller MJ, Herndon DN (1994) Nutrient support of the healing would. New Horizons 2: 202–14

    PubMed  CAS  Google Scholar 

  11. Taylor Baer M, King JC (1984) Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. Am J Clin Nutr 39: 556–70

    Google Scholar 

  12. Marchesini G, Fabbri A, Bianchi G et al. (1996) Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology 23: 1084–92

    Article  PubMed  CAS  Google Scholar 

  13. Tenaud I, Sainte-Marie I, Jumbou O et al. (1999) In vitro modulation of keratinocyte wound healing integrins by zinc, copper and managanese. Br J Dermatol 140: 26–34

    Article  PubMed  CAS  Google Scholar 

  14. Bang RL, Dashti H (1995) Keloid hypertrophic scars: trace element alteration. Nutrition 11: 527–31

    PubMed  CAS  Google Scholar 

  15. Henzel, JH, De Weese MS, Lichti EL (1970) Zinc concentrations within healing wounds. Arch Surg 100: 349–57

    PubMed  CAS  Google Scholar 

  16. Couinaud C (1989) Un syndrome méconnu: la carence aiguë en zinc chez les sujets âgés en milieu chirurgical. Chirurgie (Paris) 115: 44–7

    CAS  Google Scholar 

  17. Cuthbertson DP, Fell GS, Smith CM, Tilstone WJ (1972) Metabolism after injury. 1: effects of severity, nutrition, and environmental temperature on protein potassium, zinc, and creatine. Br J Surg 59: 925–31

    Article  Google Scholar 

  18. Askari A, Long CL, Blakemore WS (1982) Net metabolic changes of zinc, copper, nitrogen, and potassium balances in skeletal trauma patients. Metabolism 12: 1185–93

    Article  Google Scholar 

  19. Berger MM, Cavadini C, Chioléro R, Dirren H (1996) Copper, selenium, and zinc status and balances after major trauma. J Trauma 40: 103–9

    Article  PubMed  CAS  Google Scholar 

  20. Berger MM, Cavadini C, Bart A et al. (1992) Cutaneous zinc and copper losses in burns. Burns 18: 373–80

    Article  PubMed  CAS  Google Scholar 

  21. Berger MM, Cavadini C, Bart A et al. (1992) Selenium losses in 10 burned patients. Clin Nutr 11: 75–82

    Article  PubMed  CAS  Google Scholar 

  22. Pories WJ, Henzel JH, Rob CG, Strain WH (1967) Acceleration of healing with zinc sulfate. Ann Surg 165: 432–6

    Article  PubMed  CAS  Google Scholar 

  23. Wilkinson EA, Hawke CI (2000) Oral zinc for arterial and venous leg ulcers. Cochrane Database of Systematic Reviews; 2):CD001273

    Google Scholar 

  24. Berger MM, Spertini F, Shenkin A et al. (1998) Trace element supplementation modulates pulmonary infection rates after major burns: a double blind, placebo controlled trial. Am J Clin Nutr 68: 365–71

    PubMed  CAS  Google Scholar 

  25. Berger MM, Binnert C, Baines M et al. (2004) Trace element supplements influence protein metabolism and tissue levels after major burns. Intensive Care Med 30(suppl): S61

    Google Scholar 

  26. Lindeman RD (1990) Trace minerals: hormonal and metabolic interrelationships. Philadelphia: Lippincott

    Google Scholar 

  27. Olivieri O, Girelli D, Stanzial AM et al. (1996) Selenium, zinc, and thyroid hormones in healthy subjects: low T3/T4 ratio in the elderly is related to impaired selenium status. Biol Trace Elem Res 511: 31–41

    Article  Google Scholar 

  28. Nishiyama S, Futagoishisuginohara Y, Matsukura M et al. (1994) Zinc supplemenation alters thyroid hormone metabolism in disabled patients with zinc deficiency. J Am Coll Nutr 13: 62–7

    PubMed  CAS  Google Scholar 

  29. Berger MM, Reymond MJ, Shenkin A et al. (2001) Influence of selenium supplements on the post-traumatic alterations of the thyroid axis—a prospective placebo controlled trial. Intensive Care Med 27: 91–100

    Article  PubMed  CAS  Google Scholar 

  30. Maret W (2000) The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130 5S (Suppl): 1455S–8S

    Google Scholar 

  31. Food and Nutrition Board of the Institute of Medicine (2000) Dietary reference intakes for Vitamin C, Vitamin E, Selenium and Carotenoids. Washington DC: National Academy Press.

    Google Scholar 

  32. Gutteridge JMC (1993) Free radicals in disease processes—A complication of cause and consequence—Invited review. Free Radical Res Commun 19: 141–58

    Article  CAS  Google Scholar 

  33. Halliwell B (1994) Free radicals and antioxidants: A personal view. Nutr Rev 52: 253–65

    Article  PubMed  CAS  Google Scholar 

  34. Darlow BA, Inder TE, Graham PJ et al. (1995) The relationship of selenium status to respiratory outcome in the very low birth weight infant. Pediatrics 96: 314–19

    PubMed  CAS  Google Scholar 

  35. Hawker FH, Ward HE, Stewart PM et al. (1993) Selenium deficiency augments the pulmonary toxic effects of oxygen exposure in the rat. Eur Resp J 6: 1317–23

    CAS  Google Scholar 

  36. Chioléro R, Berger MM (1994) Endocrine response to brain injury. New Horizons 2: 432–42

    PubMed  Google Scholar 

  37. McClain CJ, Twyman DL, Ott LG et al. (1986) Serum and urine zinc response in head-injured patients. J Neurosurg 64: 224–30

    Article  PubMed  CAS  Google Scholar 

  38. Chan PK (1992) Antioxidant-dependent amelioration of brain injury: role of CuZn-superoxide dismutase. J Neurotrauma 9: S417–S423

    PubMed  Google Scholar 

  39. Young B, Ott L, Kasarskis E et al. (1996) Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J Neurotrauma 13: 25–34

    Article  PubMed  CAS  Google Scholar 

  40. Ferrari R, Ceconi C, Curello S et al. (1993) Myocardial damage during ischaemia and reperfusion. Europ Heart J 14 Suppl G: 25–30

    Google Scholar 

  41. Soncul H, Kaptanoglu M, Oz E et al. (1994) The role of selenium added to pulmonary preservation solutions in isolated guinea pig lungs. J Thorac Cardiovasc Surg 108: 922–7

    PubMed  CAS  Google Scholar 

  42. Malecki EA, Greger JL (1996) Manganese protects against heart mitochondrial lipid peroxidation in rats fed high levels of polyunsaturated fatty acids. J Nutrition 126: 27–33

    CAS  Google Scholar 

  43. Aiuto LT, Powell SR (1995) Characterization of the antiarrhythmic effect of the trace element zinc and its potential relationship to inhibition of oxidative stress. J Trace Elem Exp Med 8: 173–82

    CAS  Google Scholar 

  44. Levander OA (1997) Nutrition and newly emerging viral diseases: An overview. J Nutrition 127(Suppl 5): 948S–950S

    CAS  Google Scholar 

  45. Chandra RK (1991) Trace elements and immune responses. In: Trace elements in nutrition of children. Chandra RK (ed), vol. 23. New York: Raven Press; 201–14

    Google Scholar 

  46. Galan P, Davila M, Mekki N, Hercberg S (1988) Iron deficiency, inflammatory processes and humoral immunity in children. Internat J Vit Nutr Res 58: 225–30

    CAS  Google Scholar 

  47. Scrimshaw NS (1991) Effect of infection on nutrient requirements. JPEN J Parenter Enteral Nutr 15: 589–600

    Article  PubMed  CAS  Google Scholar 

  48. Solomons NW (1993) Trace elements. In: Clinical nutrition: Parenteral nutrition. Rombeau JL, Caldwell MD, eds. 2nd ed. Philadelphia: Saunders; 150–84

    Google Scholar 

  49. Hershko C, Peto TEA, Weatherall DJ (1988) Iron and infection. Br Med J 296: 660–4

    Article  CAS  Google Scholar 

  50. James BW, Mauchline WS, Dennis PJ, Keevil CW (1997) A study of iron acquisition mechanisms of Legionella pneumophila growth in chemostat culture. Current Microbiology 34: 238–243

    Article  PubMed  CAS  Google Scholar 

  51. Autenrieth I, Hantke K, Heesemann J (1991) Immunosuppression of the host and delivery of iron to the pathogen: a possible dual role of siderophores in the pathogenesis of microbial infections? Med Microbiol Immunol 180: 135–41

    Article  PubMed  CAS  Google Scholar 

  52. Mumby S, Maragrson M, Quinlan GJ et al. (1997) Is bleomycin-detectable iron present in the plasma of patients with septic shock? Intensive Care Med 23: 635–39

    Article  PubMed  CAS  Google Scholar 

  53. Schwarz KB (1996) Oxidative stress during viral infection—A review. Free Rad Biol Med 21: 641–9

    Article  PubMed  CAS  Google Scholar 

  54. Constans J, Pellegrin JL, Sergeant C et al. (1995) Serum selenium predicts outcome in HIV infection. JAIDS 10: 392

    PubMed  CAS  Google Scholar 

  55. Yu SY, Zhu YJ, Li WG (1997) Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biological Trace Element Research 56: 117–4

    Article  PubMed  CAS  Google Scholar 

  56. Taylor EW, Nadimpalli RG, Ramanathan CS (1997) Genomic structure of viral agents in relation to the biosynthesis of seleno-proteins. Biol Trace Elem Res 56: 63–91

    Article  PubMed  CAS  Google Scholar 

  57. Schrauzer GN, Sacher J (1994) Selenium in the maintenance and therapy of HIV-infected patients. Chem Biol Interact 91: 199–205

    Article  PubMed  CAS  Google Scholar 

  58. Beck MA, Kolbeck PC, Shi Q et al. (1994) Increased virulence of a human enterovirus Coxsackievirus B3 in selenium-deficient mice. J Infect Dis 170: 351–7

    PubMed  CAS  Google Scholar 

  59. Levander OA, Beck MA (1997) Interacting nutritional and infectious etiologies of Keshan disease—Insights from Coxsackie virus B-induced myocarditis in mice deficient in selenium or vitamin E. Biol Trace Elem Res 56: 5–21

    Article  PubMed  CAS  Google Scholar 

  60. Dimitrov NV, Ullrey DE, Primack S et al. (1984) Selenium as a metabolic modulator of phagocytosis. In: Selenium in biology and medicine. Combs GF, Levander OA et al. (eds), vol. 1, New York: Van Nostrand ReinholdeCo: 254–62

    Google Scholar 

  61. Roy M, Kiremidjian-Schumacher L, Wishe HI et al. (1994) Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol Tr Elem Res; 41: 103–14

    Article  CAS  Google Scholar 

  62. Allen JI, Kay NE, McClain CJ (1981) Severe zinc deficiency in humans: association with a reversible T-lymphocyte dysfunction. Ann Intern Med 95: 154–7

    PubMed  CAS  Google Scholar 

  63. Mertz W (1995) Risk assessment of essential trace elements: New approaches to setting recommended dietary allowances and safety limits. Nutr Rev 53: 179–85

    Article  PubMed  CAS  Google Scholar 

  64. O’Dell BL (1984) Bioavailability of trace elements. Nutr Rev 42: 301–8

    Article  Google Scholar 

  65. Shenkin A (1995) Adult micronutrient requirements. In: Artificial nutrition support in clinical practice. Payne-James J, Grimble G, Silk D (eds). London: Edward Arnold Publishers; 151–166

    Google Scholar 

  66. King J (1996) The need to consider functional endpoints in defining nutrient requirements. Am J Clin Nutr 63: S983–S984

    Google Scholar 

  67. Rayman MP (1997) Dietary selenium: time to act. Br Med J 314: 387–8

    CAS  Google Scholar 

  68. Rayman MP (2000) The importance of selenium to human health. Lancet 356: 233–41

    Article  PubMed  CAS  Google Scholar 

  69. Richard MJ, Roussel AM (1999) Micronutrients and ageing: intakes and requirements. Proc Nutrition Soc 58: 573–8

    CAS  Google Scholar 

  70. Blot WJ, Li JY, Taylor PR et al. (1995) The Linxian trials—mortality rates by vitamin-mineral intervention group. Am J Clin Nutr 62: S1424–S1426

    Google Scholar 

  71. Heatley RV (1985) Do dietary factors cause cancer in man? Clinical Nutrition 4: 1–6

    Article  PubMed  CAS  Google Scholar 

  72. van den Brandt PA, Goldbohm RA, Van’t Veer P et al. (1993) A prospective cohort study on selenium status and the risk of lung cancer. Cancer Res 53: 4860–5

    PubMed  Google Scholar 

  73. Bratakos MS, Vouterakos TP, Ioannou PV (1990) Selenium status of cancer patients in Greece. Sci Tot Environ 92: 207–22

    Article  CAS  Google Scholar 

  74. Maksimovic ZJ, Djujic I, Jovic V, Rsumovic M (1992) Selenium deficiency in Yougoslavia. Biol Trace Elem Res 33: 187–96

    Article  PubMed  CAS  Google Scholar 

  75. Clark LC, Combs GF, Turnbull BW et al. (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin—a randomized controlled trial. JAMA 276: 1957–63

    Article  PubMed  CAS  Google Scholar 

  76. Kiremidjian-Schumacher L, Roy M, Wishe HI et al. (1994) Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol Tr Elem Res 41: 115–27

    Article  CAS  Google Scholar 

  77. Hercberg S, Galan P, Preziosi P et al. (2004) The SU.VI.MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164: 2335–42

    Article  PubMed  CAS  Google Scholar 

  78. Galan P, Briancon S, Favier AS. et al. (2005) Antioxidant status and risk of cancer in the SU.VI.MAX study: is the effect of supplementation dependent on baseline level? Br J Nutr 94: 125–32

    Article  PubMed  CAS  Google Scholar 

  79. Berger MM (1997) Rôle antioxydant des micronutriments: pertinence en épidémiologie et en réanimation. Antioxidant functions of micronutrients in the general population and critically ill patients. Nutr Clin Metabol 11: 125–32

    CAS  Google Scholar 

  80. Flohé L, Brigelius-Flohé R, Saliou C et al. (1997) Redox regulation of NF-kappa B activation. Free Rad Biol Med 22: 1115–26

    Article  PubMed  Google Scholar 

  81. Angstwurm MWA, Schottdorf J, Schopohl J, Gaertner R (1999) Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit Care Med 27: 1807–13

    Article  PubMed  CAS  Google Scholar 

  82. Ding HQ, Zhou BJ, Liu L, Cheng S (2002) Oxidative stress and metallothionein expression in the liver of rats with severe thermal injury. Burns 28: 215–21

    Article  PubMed  CAS  Google Scholar 

  83. Roussyn I, Briviba K, Masumoto H, Sies H (1996) Selenium-containing compounds protect DNA from single-strand breaks caused by peroxynitrite. Arch Biochem Biophys 330: 216–8

    Article  PubMed  CAS  Google Scholar 

  84. Voruganti VS, Klein GL, Lu HX et al. (2005) Impaired zinc and copper status in children with burn injuries: need to reassess nutritional requirements. Burns 316: 711–6

    Article  Google Scholar 

  85. Berger MM, Shenkin A, Revelly JP et al. (2004) Copper, selenium, zinc and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80: 410–16

    PubMed  CAS  Google Scholar 

  86. Forceville X, Vitoux D, Gauzit R et al. (1998) Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients. Crit Care Med 26: 1536–44

    Article  PubMed  CAS  Google Scholar 

  87. Hininger I, Favier M, Arnaud J (2004) Effects of combined micronutrient supplementation on maternal biological status. Eur J Clin Nutr 58: 52–9

    Article  PubMed  CAS  Google Scholar 

  88. Tamura T, Goldenberg RL, Johnson KE, Chapman VR (2004) Relationship between the pre-pregnancy BMI and plasma zinc concentrations in early pregnancy. Br J Nutr 91: 773–7

    Article  PubMed  CAS  Google Scholar 

  89. Swanson C, King JC (1987) Zinc and pregnancy outcome. Am J Clin Nutr 46: 763–71

    PubMed  CAS  Google Scholar 

  90. Merialdi M, Caulfield LE (2004) Randomized controlled trial of prenatal zinc supplementation. Am J Obstet Gynecol 190

    Google Scholar 

  91. Wardle C, Forbes A, Roberts NB et al. (1999) Hypermanganesemia in long-term intravenous nutrition and chronic liver disease. JPEN J Parenter Enteral Nutr 23: 350–5

    Article  PubMed  CAS  Google Scholar 

  92. Kramer TR, Udomkesmalee E, Dhanamitta S et al. (1993) Lymphocyte responsivenes of children supplemented with vitamin A and zinc. Am J Clin Nutr 58: 566–70

    PubMed  CAS  Google Scholar 

  93. Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 184: 309–18

    Article  CAS  Google Scholar 

  94. Yang FY, Lin ZH, Xing JR et al. (1994) Se deficiency is a necessary but not sufficient factor required for the pathogenesis of Keshan disease. J Clin Biochem Nutr 16: 101–10

    Google Scholar 

  95. Hercberg S, Preziosi P, Galan P et al. (1991) Apports nutritionnels ďun échantillon représentatif de la population du Val-de-Marne: III. les apports en minéraux et vitamines. Rev Epidém Santé Publ 39: 245–61

    CAS  Google Scholar 

  96. Baumgartner TG, Anderson CR, Bailey LB et al. (1991) Clinical guide to parenteral micronutrition. 2nd ed. Deerfield USA: Lymphomed Fujisawa.

    Google Scholar 

  97. Nielsen FH (1996) Evidence for the nutritional essentiality of boron. J Trace Elem Experimental Med 9: 215–29

    Article  CAS  Google Scholar 

  98. Subcommittee on the 10th RDAs edition on (1989) Recommended Dietary Allowances, 10th ed. In. Washington DC: National Academy Press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Berger, M. (2007). Éléments traces. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics