Skip to main content

Programming-by-Demonstration of Robot Motions

  • Chapter
Book cover Robot Intelligence

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 1411 Accesses

Abstract

In this chapter a novel approach to skill acquisition from human demonstration is presented. Usually the morphology of a robot manipulator is very different from the human arm and cannot simply copy a human motion. Instead the robot has to execute its own version of the skill demonstrated by the operator. Once a skill has been acquired by the robot it must also be able to generalize to other similar skills without starting a new learning process. By using a motion planner that operates in an object-related world-frame called hand-state, we show that this representation simplifies a skill reconstruction and preserves the essential parts of the skill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009). doi:10.1016/j.robot.2008.10.024

    Article  Google Scholar 

  2. Calinon, S., Guenter, F., Billard, A.: On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern., Part B 37(2), 286–298 (2007). doi:10.1109/TSMCB.2006.886952

    Article  Google Scholar 

  3. Pardowitz, M., Knoop, S., Dillmann, R., Zöllner, R.D.: Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Trans. Syst. Man Cybern., Part B 37(2), 322–332 (2007). doi:10.1109/TSMCB.2006.886951

    Article  Google Scholar 

  4. Skoglund, A., Iliev, B., Kadmiry, B., Palm, R.: Programming by demonstration of pick-and-place tasks for industrial manipulators using task primitives. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, Florida, 20–23 June 2007, pp. 368–373 (2007). doi:10.1109/CIRA.2007.382863

  5. Takamatsu, J., Ogawara, K., Kimura, H., Ikeuchi, K.: Recognizing assembly tasks through human demonstration. Int. J. Robot. Res. 26(7), 641–659 (2007). doi:10.1177/0278364907080736

    Article  Google Scholar 

  6. Nehaniv, C.L., Dautenhahn, K.: The correspondence problem. In: Dautenhahn, K., Nehaniv, C. (eds.) Imitation in Animals and Artifacts, pp. 41–61. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, pp. 1398–1403 (2002). doi:10.1109/ROBOT.2002.1014739

  8. Hersch, M., Billard, A.G.: Reaching with multi-referential dynamical systems. Auton. Robots 25(1–2), 71–83 (2008). doi:10.1007/s10514-007-9070-7

    Article  Google Scholar 

  9. Iossifidis, I., Schöner, G.: Dynamical systems approach for the autonomous avoidance of obstacles and joint-limits for an redundant robot arm. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, pp. 580–585 (2006). doi:10.1109/IROS.2006.282468

  10. Oztop, E., Arbib, M.A.: Schema design and implementation of the grasp-related mirror neurons. Biol. Cybern. 87(2), 116–140 (2002). doi:10.1007/s00422-002-0318-1

    Article  MATH  Google Scholar 

  11. Ijspeert, A., Nakanishi, J., Schaal, S.: Trajectory formation for imitation with nonlinear dynamical systems. In: IEEE International Conference on Intelligent Robots and Systems (IROS 2001), vol. 2, pp. 752–757 (2001). doi:0.1109/IROS.2001.976259

  12. Ude, A.: Trajectory generation from noisy positions of object features for teaching robot paths. Robot. Auton. Syst. 11(2), 113–127 (1993)

    Article  Google Scholar 

  13. Billard, A., Epars, Y., Calinon, S., Schaal, S., Cheng, G.: Discovering optimal imitation strategies. Robot. Auton. Syst. 47(2–3), 69–77 (2004). doi:10.1016/j.robot.2004.03.002

    Article  Google Scholar 

  14. Aleotti, J., Caselli, S.: Robust trajectory learning and approximation for robot programming. Robot. Auton. Syst. 54(5), 409–413 (2006). doi:10.1016/j.robot.2006.01.003

    Article  Google Scholar 

  15. Palm, R., Iliev, B., Kadmiry, B.: Recognition of human grasps by time-clustering and fuzzy modeling. Robot. Auton. Syst. 57(5), 484–495 (2009). doi:10.1016/j.robot.2008.10.012

    Article  Google Scholar 

  16. Palm, R., Iliev, B.: Learning of grasp behaviors for an artificial hand by time clustering and Takagi-Sugeno modeling. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006, pp. 291–298 (2006). doi:10.1109/fuzzy.2006.1681728

  17. Iliev, B., Kadmiry, B., Palm, R.: Interpretation of human demonstrations using mirror neuron system principles. In: Proceedings of the 6th IEEE International Conference on Development and Learning, Imperial College London, 11–13 July 2007, pp. 128–133 (2007). doi:10.1109/DEVLRN.2007.4354036

  18. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)

    Article  Google Scholar 

  19. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of the 1979 IEEE CDC, pp. 761–766 (1979)

    Google Scholar 

  20. Palm, R., Stutz, C.: Generation of control sequences for a fuzzy gain scheduler. Int. J. Fuzzy Syst. 5(1), 1–10 (2003)

    MathSciNet  Google Scholar 

  21. Palm, R., Driankov, D., Hellendoorn, H.: Model Based Fuzzy Control. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  22. Tegin, J., Ekvall, S., Kragic, D., Wikander, J., Iliev, B.: Demonstration based learning and control for automatic grasping. J. Intell. Serv. Robot. 2(1), 23–30 (2009). doi:10.1007/s11370-008-0026-3

    Article  Google Scholar 

  23. Delson, N., West, H.: Robot programming by human demonstration: adaptation and inconsistency in constrained motion. In: IEEE International Conference on Robotics and Automation, pp. 30–36 (1996). doi:10.1109/ROBOT.1996.503569

  24. Skoglund, A., Iliev, B., Palm, R.: A hand state approach to imitation with a next-state-planner for industrial manipulators. In: Proceedings of the 2008 International Conference on Cognitive Systems, University of Karlsruhe, Karlsruhe, Germany, 2–4 April 2008, pp. 130–137 (2008)

    Google Scholar 

  25. Conditt, M.A., Mussa-Ivaldi, F.A.: Central representation of time during motor learning. Proc. Natl. Acad. Sci. USA 96, 11625–11630 (1999)

    Article  Google Scholar 

  26. Palm, R., Iliev, B.: Segmentation and recognition of human grasps for programming-by-demonstration using time-clustering and fuzzy modeling. In: Proceedings of the IEEE International Conference on Fuzzy Systems, London, UK, 23–26 July 2007

    Google Scholar 

  27. Bullock, D., Grossberg, S.: VITE and FLETE: neural modules for trajectory formation and postural control. In: Hershberger, W.A. (ed.) Volitonal Action, pp. 253–297. Elsevier Science, Amsterdam (1989)

    Google Scholar 

  28. Skoglund, A., Tegin, J., Iliev, B., Palm, R.: Programming-by-demonstration of reach to grasp tasks in hand-state space. In: Proceedings of the 14th International Conference on Advanced Robotics, Munich, Germany, 22–26 June 2009

    Google Scholar 

  29. Skoglund, A.: Programming by demonstration of robot manipulators. PhD thesis, Örebro University, June 2009

    Google Scholar 

  30. Levine, W.S.: The root locus plot. In: Levine, W.S. (ed.) The Control Handbook, pp. 192–198. CRC Press, Boca Raton (1996)

    Google Scholar 

  31. Palm, R., Iliev, B., Kadmiry, B.: Grasp recognition by fuzzy modeling and hidden Markov models (hmm). In: Robot Intelligence. Springer, Berlin (2010)

    Google Scholar 

  32. Tegin, J., Wikander, J., Iliev, B.: A sub €1000 robot hand for grasping—design, simulation and evaluation. In: International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Coimbra, Portugal, September 2008

    Google Scholar 

  33. Tegin, J., Ekvall, S., Kragic, D., Iliev, B., Wikander, J.: Demonstration based learning and control for automatic grasping. In: International Conference on Advanced Robotics, Jeju, Korea, August 2007

    Google Scholar 

  34. Hersch, M., Billard, A.G.: A biologically-inspired controller for reaching movements. In: Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, pp. 1067–1071 (2006). doi:10.1109/BIOROB.2006.1639233

Download references

Acknowledgements

Johan Tegin at Mechatronics Laboratory, at the Royal Institute of Technology, Stockholm, should be acknowledged for providing access to the KTHand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Skoglund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Skoglund, A., Iliev, B., Palm, R. (2010). Programming-by-Demonstration of Robot Motions. In: Liu, H., Gu, D., Howlett, R., Liu, Y. (eds) Robot Intelligence. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84996-329-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-329-9_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-328-2

  • Online ISBN: 978-1-84996-329-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics