Skip to main content

Aprotinin Decreases Lung Reperfusion Injury and Dysfunction

  • Chapter
  • First Online:
  • 1039 Accesses

Abstract

Reduced lung perfusion and subsequent pulmonary ischemia can cause increased pulmonary vascular resistance, decreased oxygenation capacity, worsened compliance, and edema formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Olivencia-Yurvati AH, Ferrara CA, Tierney N, Wallace N, Mallet RT. Strategic leukocyte depletion reduces pulmonary microvascular pressure and improves pulmonary status post-cardiopulmonary bypass. Perfusion. 2003;18:23-31.

    Article  PubMed  Google Scholar 

  2. Asimakopoulos G, Smith PLC, Ratnatunga CP, Taylor KM. Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. Ann Thorac Surg. 1999;68:1107-1115.

    Article  PubMed  CAS  Google Scholar 

  3. Reddy SL, Grayson AD, Oo AY, Pullan MD, Poonacha T, Fabri BM. Does off-pump surgery offer benefit in high respiratory risk patients? A respiratory risk stratified analysis in a propensity-matched cohort. Eur J Cardiothorac Surg. 2006;30(1):126-131.

    Article  PubMed  Google Scholar 

  4. Montes FR, Maldonado JD, Paez S, Ariza F. Off-pump versus on-pump coronary artery bypass surgery and postoperative pulmonary dysfunction. J Cardiothorac Vasc Anesth. 2004;18(6):698-703.

    Article  PubMed  Google Scholar 

  5. Syed A, Fawzy H, Farag A, Nemlander A. Comparison of pulmonary gas exchange in OPCABG versus conventional CABG. Heart Lung Circ. 2004;13(2):168-172.

    Article  PubMed  Google Scholar 

  6. Staton GW, Williams WH, Mahoney EM, et al. Pulmonary outcomes of off-pump versus on-pump coronary artery bypass surgery in a randomized trial. Chest. 2005;127(3):892-901.

    Article  PubMed  Google Scholar 

  7. Landis RC, Asimakopoulos G, Poullis M, Haskard DO, Taylor KM. The antithrombotic and anti-inflammatory mechanisms of action of aprotinin. Ann Thorac Surg. 2001;72(6):2169-2175.

    Article  PubMed  CAS  Google Scholar 

  8. Royston D, Bidstrup BP, Taylor KM, Sapford RN. Effect of aprotinin on need for blood transfusions after repeat open heart surgery. Lancet. 1987;2:1289-1291.

    Article  PubMed  CAS  Google Scholar 

  9. Rahman A, Ustünda B, Burma O, Ozercan IH, Cekirdekçi A, Bayar MK. Does aprotinin reduce lung reperfusion damage after cardiopulmonary bypass? Eur J Cardiothorac Surg. 2000;18(5):583-588.

    Article  PubMed  CAS  Google Scholar 

  10. Erdogan M, Kalaycioglu S, Iriz E. Protective effect of aprotinin against lung damage in patients undergoing CABG surgery. Acta Cardiol. 2005;60(4):367-372.

    Article  PubMed  Google Scholar 

  11. Bittner HB, Lemke J, Lange M, Rastan A, Mohr FW. The impact of aprotinin on blood loss and blood transfusion in off-pump coronary artery bypass grafting. Ann Thorac Surg. 2008;85(5):1662-1668.

    Article  PubMed  Google Scholar 

  12. Silliman CC, Paterson AJ, Dickey WO, et al. The association of biologically active lipids with the development of transfusion-related acute lung injury: a retrospective study. Transfusion. 1997;37:719-726.

    Article  PubMed  CAS  Google Scholar 

  13. Nathens AB. Massive transfusion as a risk factor for acute lung injury: association or causation? Crit Care Med. 2006;34(5 suppl):144-150.

    Article  Google Scholar 

  14. Cooper JD, Patterson GA, Trulock EP; Washington University Lung Transplant Group. Results of 131 consecutive single and bilateral lung transplant recipients. J Thorac Cardiovasc Surg 1994;107(2):460–471.

    Google Scholar 

  15. Khan SU, Salloum J, O’Donovan PB, et al. Acute pulmonary edema after lung transplantation. Chest. 1999;116:187-194.

    Article  PubMed  CAS  Google Scholar 

  16. Burdine J, Hertz MI, Snover DC, Bolman RM. Heart-lung and lung transplantation: perioperative pulmonary dysfunction. Transplant Proc. 1991;23:1176-1177.

    PubMed  CAS  Google Scholar 

  17. Novick RJ, Gehman KE, Ali IS, Lee J. Lung preservation: the importance of endothelial and alveolar type II cell integrity. Ann Thorac Surg. 1996;62:302-314.

    Article  PubMed  CAS  Google Scholar 

  18. Fiser SM, Tribble CG, Long SM, et al. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response. J Thorac Cardiovasc Surg. 2001;121:1069-1075.

    Article  PubMed  CAS  Google Scholar 

  19. Asimakopoulos G, Thompson R, Nourshargh S, et al. An anti-inflammatory property of aprotinin detected at the level of leukocyte extravasation. J Thorac Cardiovasc Surg. 2000;120:361-369.

    Article  PubMed  CAS  Google Scholar 

  20. de Perrot M, Sekine Y, Fischer S, et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med. 2002;165:211-215.

    PubMed  Google Scholar 

  21. Jorens PG, Van Damme J, De Backer W, et al. Interleukin-8 in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine. 1992;4:592-597.

    Article  PubMed  CAS  Google Scholar 

  22. Hill GE, Pohorecki R, Alonso A, Rennard SI, Robbins RA. Aprotinin reduces interleukin-8 production and lung neutrophil accumulation after cardiopulmonary bypass. Anesth Analg. 1996;83:696-700.

    PubMed  CAS  Google Scholar 

  23. Gilliland HE, Armstrong MA, Uprichard S, Clarke G, McMurray TJ. The effect of aprotinin on interleukin-8 concentration and leukocyte adhesion molecule expression in an isolated cardiopulmonary bypass system. Anaesthesia. 1999;54:427-433.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts RF, Nishanian GP, Carey JN, et al. Addition of aprotinin to organ preservation solutions decreases lung reperfusion injury. Ann Thorac Surg. 1998;66:225-230.

    Article  PubMed  CAS  Google Scholar 

  25. Mathias MA, Tribble CG, Dietz JF, et al. Aprotinin improves pulmonary function during reperfusion in an isolated lung model. Ann Thorac Surg. 2000;70:1671-1674.

    Article  PubMed  CAS  Google Scholar 

  26. Eren S, Esme H, Balci AE, et al. The effect of aprotinin on ischemia-reperfusion injury in an in situ normothermic ischemic lung model. Eur J Cardiothorac Surg. 2003;23:60-65.

    Article  PubMed  Google Scholar 

  27. Gu YJ, De Vries AJ, Vos P, Boonstra PW, Oeveren WV. Leukocyte depletion during cardiac operation: a new approach through the venous bypass circuit. Ann Thorac Surg. 1999;67:604-609.

    Article  PubMed  CAS  Google Scholar 

  28. Bittner HB, Richter M, Kuntze T, et al. Aprotinin decreases reperfusion injury and allograft dysfunction in clinical lung transplantation. Eur J Cardiothorac Surg. 2006;29(2):210-215.

    Article  PubMed  Google Scholar 

  29. Herrington CS, Prekker ME, Hertz MI, Studenski LL, Radosevich DM, Shumway SJ, Kelly RF, Arrington AK, Susanto D, Baltzell JW, Bittner HB, Dahlberg PS. A randomized, placebo controlled trial of aprotinin to reduce primary graft dysfunction following lung transplantation. J Transplant 2009 [accepted].

    Google Scholar 

  30. Mangano DT, Tudor IC, Detzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354(4):353-365.

    Article  PubMed  CAS  Google Scholar 

  31. Mangano DT, Miao Y, Vuylsteke A, Tudor IC, Juneja R, Filipescu D, Hoeft A, Fontes ML, Hillel Z, Ott E, Titov T, Dietzel C, Levin J; Investigators of the Multicenter Study of Perioperative Ischemia Research Group; Ischemia Research and Education Foundation. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 2007;297(5):471–479.

    Google Scholar 

  32. King RC, Binns OAR, Rodriguez F, et al. Reperfusion injury significantly impacts clinical outcome after pulmonary transplantation. Ann Thorac Surg. 2000;69:1681-1685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmuth B. Bittner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Bittner, H.B., Dahlberg, P.S., Herrington, C.S., Mohr, F.W. (2010). Aprotinin Decreases Lung Reperfusion Injury and Dysfunction. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics