Skip to main content

Applications for Brain-Computer Interfaces

  • Chapter

Part of the book series: Human-Computer Interaction Series ((HCIS))

Abstract

Brain-computer Interfaces (BCIs) have been studied for nearly thirty years, with the primary motivation of providing assistive technologies for people with very severe motor disabilities. The slow speeds, high error rate, susceptibility to artifact, and complexity of BCI systems have been challenges for implementing workable real-world systems. However, recent advances in computing and bio-sensing technologies have improved the outlook for BCI applications, making them promising not only as assistive technologies but also for mainstream applications. This chapter presents a survey of applications for BCI systems, both historical and recent, in order to characterize the broad range of possibilities for neural control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams L, Hunt L, Moore M (2003) The aware system: Prototyping an augmentative communication interface. Paper presented at the Proceedings of the Rehabilitation Engineering Society of North America (RESNA)

    Google Scholar 

  • Archinoetics Inc (2009) BrainPainting, from http://www.archinoetics.com/

  • Bayliss J, Ballard D (2000) A virtual reality testbed for brain-computer interface research. IEEE Trans Rehabil Eng 8(2):188–190

    Article  Google Scholar 

  • Bell C, Shenoy P, Chalodhorn R, Rao R (2008) Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng 5:214–220

    Article  Google Scholar 

  • Birbaumer N, Cohen L (2007) Brain-computer interfaces: Communication and restoration of movement in paralysis. J Physiol 579:621–636

    Article  Google Scholar 

  • Birbaumer N, Hinterberger T, Kubler A, Neumann N (2003) The thought-translation device (TTD): Neurobehavioral mechanisms and clinical outcome. IEEE Trans Neural Syst Rehabil Eng 11(2):120–123

    Article  Google Scholar 

  • Blankertz B, Dornhege G, Krauledat M, Müller KR, Kunzmann V, Losch F et al. (2006) The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehabil Eng 14(2):147 –152

    Article  Google Scholar 

  • Blankertz B, Krauledat M, Dornhege G, Williamson J, Murray-Smith R, Müller KR (2007) A note on brain actuated spelling with the Berlin brain-computer interface. Universal Access in HCI, Part II, 4555:759–768

    Google Scholar 

  • Blatt R, Ceriani S, Dal Seno B, Fontana G, Matteucci M, Milgliore D (2008) Brain control of a smart wheelchair. Paper presented at the 10th International Conference on Intelligent Autonomous Systems

    Google Scholar 

  • Bohenick A, Borden J (2008) LazyBrains, 2008, from http://www.voxel6.com/

  • Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–1186

    Article  Google Scholar 

  • Clanton S, Laws J, Matsuoka Y (2005) Determination of the arm orientation for brain-machine interface prosthetic. In: Proceedings of the 14th IEEE Intl Workshop on Robot and Human Interactive Communication, pp 422–426

    Google Scholar 

  • Cutrell E, Tan D (2008) BCI for passive input in HCI. Paper presented at the Computer Human Interaction—ACM SIGCHI 2008

    Google Scholar 

  • Daly J, Wolpaw J (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7:1032–1043

    Article  Google Scholar 

  • Emotiv Inc (2009) Emotiv Epoc, from http://www.emotiv.com/

  • Eskandari P, Erfanian A (2008) Improving the performance of brain-computer interfaces through meditation practicing. Paper presented at the Engineering in Medicine and Biology Society

    Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  Google Scholar 

  • Gerson AD, Parra LC, Sajda P (2006) Cortically-coupled computer vision for rapid image search. IEEE Trans Neural Syst Rehabil Eng 14(2):174–179

    Article  Google Scholar 

  • Grimes D, Tan D, Hudson S, Shenoy P, Rao R (2007) Feasibility and pragmatics of classifying working memory load with an electroencephalograph. CHI 2008:835–844

    Google Scholar 

  • Iturrate I, Antelis J, Kubler A, Minguez J (2009) Non-invasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot 25(2):367–381

    Article  Google Scholar 

  • Kapoor A, Shenoy P, Tan D (2008) Combining brain computer interfaces with vision for object categorization. In: CVPR08, pp 1–8

    Google Scholar 

  • Karim A, Hinterberger T, Richter J, Mellinger J, Neumann N, Flor H, et al. (2006) Neural Internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabil Neural Repair 20(4):508–515

    Article  Google Scholar 

  • Krepki R, Blankertz B, Curio G, Müller K-R (2003) The Berlin brain-computer interface. Paper presented at the 9th International Conference on Distributed Multimedia Systems (DMS 03)

    Google Scholar 

  • Krepki R, Blankertz B, Müller K-R, Curio G (2007) The Berlin brain-computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33(1):73–90

    Article  Google Scholar 

  • Kubler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N (2001) Brain-computer communication: Unlocking the locked-in. Psychol Bull 127(3):358–375

    Article  Google Scholar 

  • Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly R, et al. (2005) Steady state VEP-based brain-computer interface control in an immersive 3D gaming enivonment. EURASIP J Appl Signal Process 19:3156–3164

    Google Scholar 

  • Li K, Sankar R, Arbel Y, Donchin E (2009) P300 single trial independent component analysis on EEG signal. In: Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience. Lecture Notes in Computer Science, vol 5638. Springer, Berlin, pp 404–410

    Chapter  Google Scholar 

  • Mason SG, Bohringer R, Borisoff JF, Birch GE (2004) Real-time control of a video game with a direct brain-computer interface. J Clin Neurophysiol 21(6):404–408

    Article  Google Scholar 

  • Matsuoka Y, Afshar P, Oh M (2006) On the design of robotic hands for brain-machine interface. Neurosurg Focus 20(5:E3):1–9

    Article  Google Scholar 

  • Millán JdR, Renkens F, Mouriño J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51(6):1026–1033

    Article  Google Scholar 

  • Miranda E, Brouse A, Boskamp B, Mullaney H (2005) Plymouth brain-computer music interface project: Intelligent assistive technology for music-making. Paper presented at the International Computer Music Conference

    Google Scholar 

  • Moberg Research (2009) BrainBall, from http://www.mobergresearch.com/brainball.html

  • Moore Jackson M (2008) Direct brain interfaces for healing games. Paper presented at the SIGCHI 2008 Brain-Computer Interface Workshop

    Google Scholar 

  • Moore MT, Ope, Yadav, Yadav, Amit (2004) The BrainBrowser, a brain-computer interface for internet navigation. Paper presented at the Society for Neuroscience, San Diego, CA

    Google Scholar 

  • Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazawa T (2007) A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inf Syst E90-D(7):1028–1036

    Article  Google Scholar 

  • NeuroSky Inc. (2009). MindSet, from http://www.neurosky.com/

  • Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JdR, Allison B, et al. (2008) Brain-computer interfacing for intelligent systems. IEEE Intell Syst 23(3):72–79

    Article  Google Scholar 

  • Nijholt A, Oude Bos D, Reuderink B (2009) Turning shortcomings into challenges: Brain-computer interfaces for games. Entertain Comput 1(2):85–94

    Article  Google Scholar 

  • Oude Bos D, Reuderink B (2008) Brainbasher: A BCI game. In: Markopoulos P, Hoonhout J, Soute I, Read J (eds) Extended Abstracts of the International Conference on Fun and Games 2008, Eindhoven, Netherlands, October 2008. Eindhoven University of Technology, Eindhoven, pp 36–39

    Google Scholar 

  • Perelmouter J, Birbaumer N (2000) A binary spelling interface with random errors. IEEE Trans Rehabil Eng 8(2):227–232

    Article  Google Scholar 

  • Pfurtscheller G, Leeb R, Keinrath C, Friedman D, Neuper C, Guger C, et al. (2006) Walking from thought. Brain Res 1071:145–152

    Article  Google Scholar 

  • Pfurtscheller J, Rupp R, Müller G, Fabsits E, Korisek GHG, et al. (2005) Functional electrical stimulation instead of surgery? Improvement of grasping function with FES in a patient with C5 tetraplegia. Unfallchirurg 108(7):587–590 (German)

    Article  Google Scholar 

  • Rapoport E, Nishimura E, Zadra J, Wubbels P, Proffitt D, Downs T, et al. (2008) Engaging, non-invasive brain-computer interfaces (BCIs) for improving training effectiveness and enabling creative expression. Hum Factors Ergon Soc Annu Meet Proc 52(7):591–594

    Article  Google Scholar 

  • Schmorrow D, Estabrooke I, Grootjen M (eds) (2009) Foundations of augmented cognition: Neuroergonomics and operational neuroscience. In: 5th International Conference, FAC 2009 Held as Part of HCI International 2009, San Diego, CA, USA, July 19–24, 2009. Lecture Notes in Computer Science, vol 5638. Springer, Berlin, p 850. ISBN 978-3-642-02811-3

    Google Scholar 

  • Tan D (2006) Brain-computer interfaces: Applying our minds to human-computer interaction. Paper presented at the ACM SIGCHI—Workshop

    Google Scholar 

  • Toyota (2009). Real-time control of wheelchairs with brain waves—a new signal processing technology for brain machine interface (BMI) application. Press Release from Toyota Central R&D Labs

    Google Scholar 

  • Vaughan TM, McFarland DJ, Schalk G, Sarnacki WA, Robinson L, Wolpaw JR (2001) EEG-based brain-computer interface: development of a speller application. Society for Neuroscience Abstracts, vol 26

    Google Scholar 

  • Vora J, Allison B, Moore M (2005) Discrete control of a robotic arm with a P300-based brain-computer interface. Paper presented at the Third International Brain-Computer Interface Meeting

    Google Scholar 

  • Zander TO, Kothe C, Jatzev S, Dashuber R, Welke S, de Fillippis M, et al (2008) Team PhyPA: Developing applications for brain-computer interaction. Paper presented at the Computer Human Interaction (SIGCHI), Florence, Italy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody Moore Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Moore Jackson, M., Mappus, R. (2010). Applications for Brain-Computer Interfaces. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-272-8_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-271-1

  • Online ISBN: 978-1-84996-272-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics