Skip to main content

EEG-Based Navigation from a Human Factors Perspective

  • Chapter

Part of the book series: Human-Computer Interaction Series ((HCIS))

Abstract

In this chapter we discuss Brain-Computer Interfaces (BCIs) as navigation devices from a Human Factors point of view. We argue that navigation is more than only steering a car or a wheelchair. It involves three levels: planning, steering and control, linked to cognition, perception and sensation, respectively. We structure the existing BCIs along those three levels. Most existing BCIs focus on the steering level of navigation. This is a remarkable observation from a Human Factors perspective because steering requires a very specific subclass of control devices that have a high bandwidth and a very low latency like joysticks or steering wheels; requirements that can not be met with current BCIs. We recommend exploring the potential of BCIs for the planning level, e.g. to select a route, and for the control level, e.g. based on possible collision-related potentials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR (2008) Towards an independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol 119(2):399–408

    Article  Google Scholar 

  • Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 11(2):113–116

    Article  MathSciNet  Google Scholar 

  • Bell CJ, Shenoy P, Chalodhorn R, Rao RPN (2008) Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng 5(2):214–220

    Article  Google Scholar 

  • Birbaumer N, Cohen LG (2007) Brain-computer interfaces: Communication and restoration of movement in paralysis. J Physiol 579(3):621–636

    Article  Google Scholar 

  • Blankertz B, Krauledat M, Dornhege G, Williamson J, Murray-Smith R, Müller K-R (2007) A note on brain actuated spelling with the Berlin brain-computer interface. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol 4555. Springer, Berlin, pp 59–768. (Part 2)

    Google Scholar 

  • Brouwer A-M, Van Erp JBF (2008) A tactile P300 BCI and the optimal number of tactors: Effects of target probability and discriminability. In: Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course 2008. Verlag der Technischen Universität Graz, Graz, pp 280–285

    Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  • Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán JdR (2008) A brain-actuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol 119(9):2159–2169

    Article  Google Scholar 

  • Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137(3–4):346–353

    Article  Google Scholar 

  • Kelly SP, Lalor EC, Finucane C, McDarby G, Reilly RB (2005) Visual spatial attention control in an independent brain-computer interface. IEEE Trans Biomed Eng 52(9):1588–1596

    Article  Google Scholar 

  • Leeb R, Keinrath C, Friedman D, Guger C, Scherer R, Neuper C, Garau M, Antley A, Steed A, Slater M, Pfurtscheller G (2006) Walking by thinking: The brainwaves are crucial, not the muscles! Presence: Teleop Virtual Environ 15(5):500–514

    Article  Google Scholar 

  • Lehne M, Ihme K, Brouwer A-M, van Erp JBF, Zander TO (2009) Error-related EEG patterns during tactile human-machine interaction. In: Proceedings of ACII-ABCI 2009

    Google Scholar 

  • Ma Z, Gao X, Gao S (2007) Enhanced P300-based cursor movement control. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNAI, vol 4565. Springer, Berlin, pp 120–126

    Google Scholar 

  • Martinez P, Bakardjian H, Cichocki A (2007) Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Comput Intell Neurosci 2007:94561

    Article  Google Scholar 

  • McFarland DJ, Krusienski DJ, Sarnacki WA, Wolpaw JR (2008) Emulation of computer mouse control with a noninvasive brain-computer interface. J Neural Eng 5(2):101–110

    Article  Google Scholar 

  • Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 8(2):211–214

    Article  Google Scholar 

  • Millán JDR, Renkens F, Mouriño J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51(6):1026–1033

    Article  Google Scholar 

  • Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Nat Acad Sci USA 93(10):4770–4774

    Article  Google Scholar 

  • Müller KR, Blankertz B (2006) Towards noninvasive brain-computer interfaces. IEEE Signal Process Mag 23(5):126–128

    Article  Google Scholar 

  • Müller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Sälejärvi WA, Hillyard SA (1998) Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Cogn Brain Res 6(4):249–261

    Article  Google Scholar 

  • Müller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G (2005) Steady-state visual evoked potential (SSVEP)-based communication: Impact of harmonic frequency components. J Neural Eng 2(4):123–130

    Article  Google Scholar 

  • Pfurtscheller G, Neuper C, Müller GR, Obermaier B, Krausz G, Schlögl A, Scherer R, Graimann B, Keinrath C, Skliris D, Wörtz M, Supp G, Schrank C (2003) Graz-BCI: State of the art and clinical applications. IEEE Trans Neural Syst Rehabil Eng 11(2):177–180

    Article  Google Scholar 

  • Pfurtscheller G, Leeb R, Keinrath C, Friedman D, Neuper C, Guger C, Slater M (2006) Walking from thought. Brain Res 1071(1):145–152

    Article  Google Scholar 

  • Pires G, Castelo-Branco M, Nunes U (2008) Visual P300-based BCI to steer a wheelchair: A Bayesian approach. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’08—‘Personalized Healthcare through Technology’, art no 4649238, pp 658–661

    Google Scholar 

  • Polich J (2007) Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  Google Scholar 

  • Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans Syst Man Cybern SMC-13(3):257–266

    Article  Google Scholar 

  • Regan D (1989) Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine

    Google Scholar 

  • Ron-Angevin R, Díaz-Estrella A, Velasco-Álvarez F (2009) A two-class brain computer interface to freely navigate through virtual worlds (Ein Zwei-Klassen-Brain-Computer-Interface zur freien Navigation durch virtuelle Welten). Biomed Tech 54(3):126–133

    Article  Google Scholar 

  • Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: Presence of an error potential. Clin Neurophysiol 111(12):2138–2144

    Article  Google Scholar 

  • Thurlings ME, Brouwer A-M, Van Erp JBF, Werkhoven P (2009) SSVEPs for BCI? The effect of stimulus eccentricity on SSVEPs. Annual Meeting Society for Neuroscience

    Google Scholar 

  • Trejo LJ, Rosipal R, Matthews B (2006) Brain-computer interfaces for 1-D and 2-D cursor control: Designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng 14(2):225–229, art no 1642775

    Article  Google Scholar 

  • Valbuena D, Cyriacks M, Friman O, Volosyak I, Gräser A (2007) Brain-computer interface for high-level control of rehabilitation robotic systems. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR ’07, art no 4428489, pp 619–625

    Google Scholar 

  • Van Erp JBF (2005) Presenting directions with a vibrotactile torso display. Ergonomics 48(3):302–313

    Article  Google Scholar 

  • Van Erp JBF, Padmos P (2003) Image parameters for driving with indirect viewing systems. Ergonomics 46(15):1471–1499

    Article  Google Scholar 

  • Van Erp JBF, Van Veen HAHC (2004) Vibrotactile in-vehicle navigation system. Transp Res Part F: Traffic Psychol Behav 7(4–5):247–256

    Article  Google Scholar 

  • Van Erp JBF, Werkhoven P (2006) Validation of principles for tactile navigation displays. In: Proceedings of the Human Factors and Ergonomics Society, pp 1687–1691

    Google Scholar 

  • Van Erp JBF, Duistermaat M, Philippens IHCHM, Van Veen HAHC, Werkhoven PJ (2006) Brain machine interfaces: Technology status, applications and the way to the future. In: Proceedings of the Human Factors and Ergonomics Society, pp 752–756

    Google Scholar 

  • Van Erp JBF, Eriksson L, Levin B, Carlander O, Veltman JA, Vos WK (2007) Tactile cueing effects on performance in simulated aerial combat with high acceleration. Aviat Space Environ Med 78(12):1128–1134

    Article  Google Scholar 

  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101

    Article  Google Scholar 

  • Wolpaw JR (2007) Brain-computer interfaces as new brain output pathways. J Physiol 579(3):613–619

    Article  Google Scholar 

  • Wolpaw JR, McFarland DJ, Vaughan TM, Schalk G (2003) The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans Neural Syst Rehabil Eng 11(2):204–207

    Article  Google Scholar 

  • Zander TO, Kothe C, Welke S, Rötting M (2008) Enhancing human-machine systems with secondary input from passive brain-computer interfaces. In: Proc of the 4th Int BCI Workshop & Training Course. Graz University of Technology Publishing House, Graz, Austria

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the BrainGain Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. This research has been supported by the GATE project, funded by the Netherlands Organization for Scientific Research (NWO) and the Netherlands ICT Research and Innovation Authority (ICT Regie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieke E. Thurlings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Thurlings, M.E., van Erp, J.B.F., Brouwer, AM., Werkhoven, P.J. (2010). EEG-Based Navigation from a Human Factors Perspective. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-272-8_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-271-1

  • Online ISBN: 978-1-84996-272-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics