Skip to main content

Stochastic-Process Approach to Nonequilibrium Thermodynamics and Biological Signal Transduction

  • Chapter
Book cover Frontiers in Computational and Systems Biology

Part of the book series: Computational Biology ((COBO,volume 15))

  • 1512 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also called “inhomogeneous” in the language of Markov processes.

References

  1. G.S. Adair. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J Biol Chem, 63:529–545, 1925.

    Google Scholar 

  2. D.A. Beard and H. Qian. Chemical Biophysics: Quantitative Analysis of Cellular Systems. Cambridge University Press, Cambridge, 2008.

    Book  MATH  Google Scholar 

  3. L. Boltzmann. Lectures on Gas Theory. University of California Press, Berkeley, 1964. (Translated by S.G. Brush)

    Google Scholar 

  4. A. Cornish-Bowden. Fundamentals of Enzyme Kinetics, 3rd edition. Portland Press, London, 2004.

    Google Scholar 

  5. G.E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E, 60:2721–2726, 1999.

    Article  Google Scholar 

  6. G.E. Crooks. Path-ensemble averages in systems driven far from equilibrium. Phys Rev E, 61(3):2361–2366, 2000.

    Article  Google Scholar 

  7. D.J. Evans, E.G.D. Cohen, and G.P. Morriss. Probability of Second Law violation in steady flows. Phys Rev Lett, 71:2401–2404, 1993.

    Article  MATH  Google Scholar 

  8. C.P. Fall, E.S. Marland, J.M. Wagner, and J.J. Tyson. Computational Cell Biology. Springer, New York, 2002.

    MATH  Google Scholar 

  9. E.H. Fischer and E.G. Krebs. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Mol Chem, 216:121–133, 1955.

    Google Scholar 

  10. E.H. Fischer, L.M.G. Heilmeyer, and R.H. Haschke. Phosphorylation and the control of glycogen degradation. Curr Top Cell Regul, 4:211–251, 1971.

    Google Scholar 

  11. H. Ge. Waiting cycle times and generalized Haldane equation in the steady-state cycle kinetics of single enzymes. J Phys Chem B, 112:61–70, 2008.

    Article  Google Scholar 

  12. H. Ge. Extended forms of the second law for general time-dependent stochastic processes. Phys. Rev. E 80:021137, 2009.

    Article  Google Scholar 

  13. H. Ge. Nonequilibrium thermodynamics of time-dependent Langevin system: Energy balance relation and the extended form of the Second Law. arXiv:0904.2059, 2009, preprint.

  14. H. Ge and D.Q. Jiang. Generalized Jarzynski’s equality of multidimensional inhomogeneous diffusion processes. J Stat Phys, 131:675–689, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Ge and M. Qian. Generalized Jarzynski’s equality in inhomogeneous Markov chains. J Math Phys, 48:053302, 2007.

    Article  MathSciNet  Google Scholar 

  16. H. Ge and M. Qian. Sensitivity amplification in the phosphorylation-dephosphorylation cycle: nonequilibrium steady states, chemical master equation and temporal cooperativity. J Chem Phys, 129:015104, 2008.

    Article  Google Scholar 

  17. H. Ge, D.Q. Jiang, and M. Qian. Reversibility and entropy production of inhomogeneous Markov chains. J Appl Prob, 43(4):1028–1043, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  18. D.T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys, 22:403, 1976.

    Article  MathSciNet  Google Scholar 

  19. P. Glansdorff and I. Prigogine. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London, 1971.

    MATH  Google Scholar 

  20. A. Goldbeter and D.E. Koshland Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA, 78:6840–6844, 1981.

    Article  MathSciNet  Google Scholar 

  21. H. Haken. Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, Berlin, 1977.

    MATH  Google Scholar 

  22. T. Hatano and S. Sasa. Steady-states thermodynamics of Langevin systems. Phys Rev Lett, 86:3463–3466, 2001.

    Article  Google Scholar 

  23. R. Heinrich, B.G. Neel, and T.A. Rapoport. Mathematical models of protein kinase signal transduction. Mol Cell, 9:957, 2002.

    Article  Google Scholar 

  24. A.V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Phys, 40:iv–vii, 1910.

    Google Scholar 

  25. T.L. Hill. Free Energy Transduction in Biology. Academic Press, New York, 1977.

    Google Scholar 

  26. J. Howard. Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland, 2001.

    Google Scholar 

  27. C.F. Huang and J.E. Ferrell Jr. Ultrasensitivity in the mitogen-activated protein cascade. Proc Natl Acad Sci USA, 93:10078, 1996.

    Article  Google Scholar 

  28. C. Jarzynski. Nonequilibrium equality for free energy differences. Phys Rev Lett, 78:2690–2693, 1997.

    Article  Google Scholar 

  29. C. Jarzynski. Nonequilibrium work relations: foundations and applications. Eur Phys J B, 64:331–340, 2008.

    Article  MathSciNet  Google Scholar 

  30. D.Q. Jiang, M. Qian, and M.P. Qian. Mathematical Theory of Nonequilibrium Steady States—on the Frontier of Probability and Dynamical Systems, volume 1833 of Lect. Notes Math. Springer, Berlin, 2004.

    Book  MATH  Google Scholar 

  31. J. Keizer. Master equations, Langevin equations and the effect of diffusion on concentration fluctuations. J Chem Phys, 67(4):1473–1476, 1977.

    Article  Google Scholar 

  32. A.B. Kolomeisky and M.E. Fisher. Molecular motors: A theorist’s perspective. Annu Rev Phys Chem, 58:675–695, 2007.

    Article  Google Scholar 

  33. D.E. Koshland Jr., G. Nemethy, and D. Filmer. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 5:365–385, 1966.

    Article  Google Scholar 

  34. D.E. Koshland Jr., A. Goldbeter, and J.B. Stock. Amplification and adaptation in regulatory and sensory systems. Science, 217:220, 1982.

    Article  Google Scholar 

  35. E.G. Krebs. Phosphorylation and dephosphorylation of glycogen phosphorylase: a prototype for reversible covalent enzyme modification. Curr Top Cell Regul, 18:401, 1980.

    Google Scholar 

  36. J. Kurchan. Fluctuation theorem for stochastic dynamics. J Phys A, Math Gen, 31:3719–3729, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Lebon, D. Jou, and J. Casas-Vázquez. Understanding Non-Equilibrium Thermodynamics. Springer, Berlin, 2008.

    Book  MATH  Google Scholar 

  38. J.L. Lebowitz and H. Spohn. A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J Stat Phys, 95(1–2):333–365, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Machlup and L. Onsager. Fluctuations irreversible processes II. Systems with kinetic energy. Phys Rev, 91:1512–1515, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  40. D.A. McQuarrie. Stochastic approach to chemical kinetics. J Appl Prob, 4(3):413–478, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Monod, J. Wyman, and J.P. Changeux. On the nature of allosteric transitions: a plausible model. J Mol Biol, 12:88–118, 1965.

    Article  Google Scholar 

  42. J.D. Murray. Mathematical Biology, 3rd edition. Springer, New York, 2002.

    MATH  Google Scholar 

  43. G. Nicolis and I. Prigogine. Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York, 1977.

    MATH  Google Scholar 

  44. L. Onsager and S. Machlup. Fluctuations irreversible processes. Phys Rev, 91:1505–1512, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Oono and M. Paniconi. Steady state thermodynamics. Prog Theor Phys Suppl, 130:29–44, 1998.

    Article  MathSciNet  Google Scholar 

  46. H. Qian. Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics. J Phys Condens Matter, 17:S3783–S3794, 2005.

    Article  Google Scholar 

  47. H. Qian. Phosphorylation energy hypothesis: Open chemical systems and their biological functions. Annu Rev Phys Chem, 58:113–142, 2007.

    Article  Google Scholar 

  48. H. Qian and D.A. Beard. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys Chem, 114:213–220, 2005.

    Article  Google Scholar 

  49. H. Qian and J.A. Cooper. Temporal cooperativity and sensitivity amplification in biological signal transduction. Biophys J, 47:2211, 2008.

    Google Scholar 

  50. M.P. Qian and M. Qian. Circulation for recurrent Markov chains. Z Wahrscheinlichkeitstheor Verw Geb, 59:203–210, 1982.

    Article  MATH  Google Scholar 

  51. M.P. Qian, M. Qian, and G.L. Gong. The reversibility and the entropy production of Markov processes. Contemp Math, 118:255–261, 1991.

    Article  MathSciNet  Google Scholar 

  52. P. Reimann. Brownian motors: noisy transport far from equilibrium. Phys Rep, 361:57–265, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Ross. Thermodynamics and Fluctuations Far from Equilibrium. Springer, Berlin, 2008.

    Book  Google Scholar 

  54. J. Schnakenberg. Network theory of microscopic and macroscopic behaviour of master equation systems. Rev Mod Phys, 48(4):571–585, 1976.

    Article  MathSciNet  Google Scholar 

  55. U. Seifert. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys Rev Lett, 95:040602, 2005.

    Article  Google Scholar 

  56. U. Seifert. Stochastic thermodynamics: principles and perspectives. Eur Phys J B, 64:423–431, 2008.

    Article  MATH  Google Scholar 

  57. E.R. Stadtman and P.B. Chock. Superiority of interconvertible enzyme cascades in metabolite regulation: analysis of multicyclic systems. Proc Natl Acad Sci USA, 74:2761, 1977.

    Article  Google Scholar 

  58. N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to dedicate this work to Professor Minping Qian on the occasion of her 70th birthday. Her work on mathematical theory of nonequilibrium steady states has had major influence on my scientific career and will have long-lasting consequences in physical and mathematical biochemistry. Also, I am very grateful to Prof. Min Qian, Prof. Hong Qian, and Prof. Daquan Jiang for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ge, H. (2010). Stochastic-Process Approach to Nonequilibrium Thermodynamics and Biological Signal Transduction. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics