Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In several process industries including mineral processing, where the materials are solids or slurries, some important measurements cannot be obtained using standard instrumentation (e.g., flow, temperature, pressure, pH, power draw, etc.), but can be visually appraised, and could be automatically quantified using machine vision techniques. In general, the information to extract from process images is not well defined and is stochastic in nature compared with those typically encountered in the manufacturing industry for automatic inspection, which have well defined deterministic features. Multivariate image analysis (MIA) as well as Multiresolution analysis (MRA) have been shown to be very efficient methods for spectral/textural analysis of process images. The objective of this chapter is to illustrate these methods using three mineral processing problems: (1) on-line estimation of froth grade in a flotation process; (2) flotation froth health monitoring for appropriate reagent dosage; and (3) on-line estimation of run-of-mine ore lithotype composition on conveyor belts. In all cases, the extracted image information could be used for developing new vision sensors for advanced control of mineral processing plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kourti T (2002) Process analysis and abnormal aituation detection: from theory to practice. IEEE Control Syst Mag 22:10–25

    Article  Google Scholar 

  2. Miletic I, Quinn S, Dudzic M, Vaculik V, Champagne M (2004) An industrial perspective on implementing on-line applications of multivariate statistics. J Process Control 14:821–836

    Article  Google Scholar 

  3. MacGregor JF, Yu H, Muñoz SG, Flores-Cerrillo J (2005) Data-based latent variable methods for process analysis, monitoring and control. Comput Chem Eng 29:1217–1223

    Article  Google Scholar 

  4. Kourti T (2005) Application of latent variable methods to process control and multivariate statistical process control in industry. Int J Adapt Control Signal Process 19:213–246

    Article  MATH  MathSciNet  Google Scholar 

  5. Cutmore NG, Liu Y, Middleton AG (1997) Ore charactetisation and sorting. Miner Eng 10:421–426

    Google Scholar 

  6. Zeng Y, Zheng M, Forssberg E (1993) Monitoring jaw crushing parameters via vibration signal measurement. Int J Miner Process 39:199–208

    Article  Google Scholar 

  7. Zeng Y, Forssberg KSE (1995) Multivariate statistical analysis of vibration signals from industrial scale ball grinding. Miner Eng 8:389–399

    Article  Google Scholar 

  8. Bergh LG, Yianatos JB, León A (2005) Multivariate projection methods applied to flotation columns. Miner Eng 18:721–723

    Article  Google Scholar 

  9. Gardner S, Le Roux NJ, Aldrich C (2005) Process data visualisation with biplots. Miner Eng 18:955–968

    Article  Google Scholar 

  10. Groenewald JW de V, Coetzer LP, Aldrich C (2006) Statistical monitoring of a grinding circuit: an industrial case study. Miner Eng 19:1138–1148

    Article  Google Scholar 

  11. Hodouin D, MacGregor JF, Hou M, Franklin M (1993) Multivariate statistical analysis of mineral processing plant data. CIM Bull 86(975):23–34

    Google Scholar 

  12. Gonzalez GD, Orchard M, Cerda JL, Casali A, Vallebuona G (2003) Local models for softsensors in a rougher flotation bank. Miner Eng 16:441–453

    Article  Google Scholar 

  13. Liu J (2004) Machine vision for process industries: monitoring, control, and optimization of visual quality of processes and products. PhD thesis, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada

    Google Scholar 

  14. Marshall AD, Martin RR (1992) Computer Vision, Models and Inspection. World Scientific Publishing, Singapore

    Google Scholar 

  15. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52

    Article  Google Scholar 

  16. Wold S (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 20:397–405

    Article  MATH  Google Scholar 

  17. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  Google Scholar 

  18. Geladi P (1988) Notes on the history and nature of partial least squares (PLS) modelling. J Chemom 2:231–246

    Article  Google Scholar 

  19. Höskuldsson A (1988) PLS regression methods. J Chemom 2:211–228

    Article  Google Scholar 

  20. Burnham AJ, Viveros R, MacGregor JF (1996) Frameworks for latent variable multivariate regression. J Chemom 10:31–45

    Article  Google Scholar 

  21. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikstrom C, Wold S (2006) Multivariate and Megavariate Data Analysis: Part I – Basic Principles and Applications. Umetrics Academy

    Google Scholar 

  22. Valle S, Li W, Qin SJ (1999) Selection of the number of principal components: the variance of reconstruction error criterion with a comparison to other methods. Ind Eng Chem Res 38:4389–4401

    Article  Google Scholar 

  23. Duchesne C, MacGregor JF (2001) Jackknife and bootstrap methods in the identification of dynamic models. J Process Control 11:553–564

    Article  Google Scholar 

  24. Nomikos P, MacGregor JF (1994) Monitoring of batch processes using multi-way principal component analysis. AIChE J 40:1361–1375

    Article  Google Scholar 

  25. Bharati MH, MacGregor JF (1998) Multivariate image analysis for real-time process monitoring and control. Ind Eng Chem Res 37:4715–4724

    Article  Google Scholar 

  26. Tessier J, Duchesne C, Bartolacci G. (2007) A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner Eng 20:1129–1144

    Article  Google Scholar 

  27. Gonzalez RC, Woods RE (1993) Digital Image Processing. Addison-Wesley, Reading, MA

    Google Scholar 

  28. Esbensen KH, Geladi P (1989) Strategy of multivariate image analysis (MIA). Chemom Intell Lab Syst 7:67–86

    Article  Google Scholar 

  29. Geladi P, Grahn H (1996) Multivariate Image Analysis, Wiley, New-York

    Google Scholar 

  30. Bharati MH, MacGregor JF, Tropper W (2003) Softwood lumber grading through on-line multivariate image analysis, Ind Eng Chem Res 42:5345–5353

    Article  Google Scholar 

  31. Bharati MH, MacGregor JF, Champagne M (2004) Using near-infrared multivariate image regression techniques to predict pulp properties. TAPPI J 3:1–7

    Google Scholar 

  32. Yu H, MacGregor JF (2003) Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemom Intell Lab Syst 67:125–144

    Article  Google Scholar 

  33. Yu H, MacGregor JF, Haarsma G, Bourg W (2003) Digital imaging for on-line monitoring and control of industrial snack food processes. Ind Eng Chem Res 42:3036–3044

    Article  Google Scholar 

  34. Yu H, MacGregor JF (2004) Monitoring flames in an industrial boiler using multivariate image analysis. AIChE J 50:1474–1483

    Article  Google Scholar 

  35. Duchesne C, Bouajila A, Bartolacci G, Pelletier P, Breau Y, Fournier J, Girard D (2003) Application of multivariate Image analysis (MIA) to predict concentrate grade in froth flotation processes. In: Proceedings of the 35th Annual CMP Meeting, Ottawa (Ontario), Canada, January 21–23, 511–526

    Google Scholar 

  36. Bartolacci G Pelletier P, Tessier J, Duchesne C, Bossé PA, Fournier J (2006) Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes - Part I: Flotation control based on froth textural characteristics, Miner Eng 19:734–747

    Article  Google Scholar 

  37. Liu JJ, MacGregor JF, Duchesne C, Bartolacci G (2005) Flotation froth monitoring using multi-resolutional multivariate image analysis. Miner Eng 18:65–76

    Article  Google Scholar 

  38. Szatvanyi G, Duchesne C, Bartolacci G (2006) Multivariate image analysis of flames for product quality and combustion control in rotary kilns. Ind Eng Chem Res 45:4706–4715

    Article  Google Scholar 

  39. Graham KJ, Krishnapisharody K, Irons GA, MacGregor JF (2007) Ladle eye area measurement using multivariate image analysis. Can Metall Q 46:397–405

    Google Scholar 

  40. Liu JJ, Bharati MH, Dunn KG, MacGregor JF (2005) Automatic masking in multivariate image analysis using support vector machines. Chemom Intell Lab Syst 79:42–54

    Article  Google Scholar 

  41. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Recog Machine Intell 11:674–693

    Article  MATH  Google Scholar 

  42. Mallat S (1989) Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans Am Math Soc 315:69–87

    MATH  MathSciNet  Google Scholar 

  43. Mallat S (1989) Multifrequency channel decompositions of images and wavelet models. IEEE Trans Acoust, Speech, Signal Process 37:2091–2110

    Article  Google Scholar 

  44. Mallat S (1999) A Wavelet Tour of Signal Processing, 2nd edition. Academic Press, San Diego, California USA

    MATH  Google Scholar 

  45. Meyer Y (1990) Ondelettes et Opérateurs. Hermann, Paris

    Google Scholar 

  46. Vetterli M, Kovaˇcevi´c J (1995) Wavelets and Subband Coding, Prentice Hall PTR, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  47. Burke Hubbard B (1998) The World According to Wavelets – The story of a Mathematical Technique in the Making, 2nd edition, AK Peters Ltd, Natick, Massachusetts

    MATH  Google Scholar 

  48. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory 36:961–1005

    Article  MATH  MathSciNet  Google Scholar 

  49. Daubechies I (1998) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  MathSciNet  Google Scholar 

  50. Chang T, Kuo CCJ (1993) Texture analysis and classification with tree-Structured wavelet transform. IEEE Trans Image Process 2:429–441

    Article  Google Scholar 

  51. Bharati MH, Liu, J, MacGregor JF (2004) Image texture analysis: methods and comparisons. Chemom Intell Lab Syst 72:57–71

    Article  Google Scholar 

  52. Gosselin R, Rodrigue D, González-Núñez R, Duchesne C (2009) Potential of hyperspectral imaging for quality control of polymer blend films. Ind Eng Chem Res 48:3033–3042

    Article  Google Scholar 

  53. Van de Wouwer G (1998) Wavelets for Multiscale Texture Analysis. PhD thesis, University of Antwerp, Antwerp, Belgium

    Google Scholar 

  54. Haralick RM, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  55. Esbensen KH, Kvaal K, Hjelmen KH (1996) The AMT approach in chemometrics first forays. J Chemom 10:569–590

    Article  Google Scholar 

  56. Liu JJ, MacGregor JF (2007) On the extraction of spectral and spatial information from images. Chemom Intell Lab Syst 85:119–130

    Article  Google Scholar 

  57. Kaspar MH, Ray WH (1993) Dynamic PLS modeling for process control. Chem Eng Sci 48:3447–3461

    Article  Google Scholar 

  58. Lakshminarayanan S, Shah SL, Nandakumar K (1997) Modeling and control of multivariate processes: dynamic PLS approach. AIChE J 43:2307–2322

    Article  Google Scholar 

  59. Liu JJ, MacGregor JF (2008) Froth-based modeling and control of flotation processes. Miner Eng 21:642–651

    Article  Google Scholar 

  60. Gebhardt JE, Tolley WK, Ahn JH (1993) Colour measurement of minerals and mineralised froth. Miner Metall Process 10:96–99

    Google Scholar 

  61. Moolman DW, Aldrich C, Van Deventer JSJ, Stange WW (1994) Digital image processing as a tool for on-line monitoring of froth in flotation plants. Miner Eng 7:1149–1164

    Article  Google Scholar 

  62. Oestreich JM, Tolley WK, Rice DA (1995) The development of a color sensor system to measure mineral compositions. Miner Eng 8:31–39

    Article  Google Scholar 

  63. Hätönen J, Hyötyniemi H, Miettunen J, Carlsson LE (1999) Using image information and partial least squares method to estimate mineral concentrations in mineral flotation. In: Proceedings of the Second International Conference on Processing and Manufacturing of Materials (IPMM’99), Honolulu, Hawaii, July 10-15 1:459–464

    Google Scholar 

  64. Bonifazi G, Serranti S, Volpe F, Zucco R. (1999) Characterisation of flotation froth color and structure by machine vision. In: Geovision 99, May 6–7, Liege, Belgium

    Google Scholar 

  65. Bonifazi G, Massacci P, Meloni A (2000) Prediction of complex sulphide flotation performances by a combined 3D fractal and colour analysis of the froths. Miner Eng 13:737–746

    Article  Google Scholar 

  66. Quenouille M. (1949) Approximate tests of correlation in time series. J Royal Statist Soc B11:18–44

    MathSciNet  Google Scholar 

  67. Tukey JW (1958) Bias and confidence in not quite large samples. Ann Math Statist 29:614

    Article  Google Scholar 

  68. Efron B (1979) Bootstrap methods: another look and the jackknife. Ann Statist 7:1–26

    Article  MATH  MathSciNet  Google Scholar 

  69. Moolman DW, Eksteen JJ, Aldrich C, Van Deventer JSJ (1996) The significance of flotation froth appearance for machine vision control. Int J Miner Process 48:135–158

    Article  Google Scholar 

  70. Hargrave JM, Hall ST (1997) Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis. Miner Eng 10:613–621

    Article  Google Scholar 

  71. Sadr-Kazemi N, Cilliers JJ (1997) An image processing algorithm for measurement of flotation froth bubble size and shape distribution. Miner Eng 10:1075–1083

    Article  Google Scholar 

  72. Cipriano A, Guarini M, Vidal R, Soto A, Sepúlveda C, Mery D, Briseno H (1998) A real time visual sensor for supervision of flotation cells. Miner Eng 11:489–499

    Article  Google Scholar 

  73. Wang W, Bergholm F, Yang B (2003) Froth delineation based on image classification. Miner Eng 16:1183–1192

    Article  Google Scholar 

  74. Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. In: Dougherty E (Ed), Mathematical Morphology in Image Processing, Marcel Dekker, New York, 433–481

    Google Scholar 

  75. Aldrich C, Moolman DW, Eksteen JJ, Van Deventer JSJ (1995) Characterization of flotation processes with self-organizing neural nets. Chem Eng Commun 139:25–39

    Article  Google Scholar 

  76. Nguyen KK, Thornton AJ (1995) The application of texture based image analysis techniques in froth flotation. In: Proceedings of DICTA95, Brisbane, Australia 613–618

    Google Scholar 

  77. Duda RO, Hart PE, Stork DG (2000) Pattern Classification. 2nd Edition, Wiley-Interscience, New York

    Google Scholar 

  78. Tessier J (2006) Détermination de la composition de l’alimentation des circuits de broyage par analyse d’images multivariées. MSc thesis, Department of Chemical Engineering, Université Laval, Québec, Québec, Canada

    Google Scholar 

  79. Napier-Munn T, Morrell S, Morrison R, Kojovic T (1996) Mineral comminution circuits: their operation and optimisation. JKMRC monograph, The University of Queensland, Brisbane

    Google Scholar 

  80. Maerz NH (2001) Automated online optical sizing analysis. In: Proceedings of the Third International Conference on Autogeneous and Semiautogeneous Grinding Technology (SAG’01), Vancouver, Canada, September 30-October 3 2:250–269

    Google Scholar 

  81. Guyot O, Monredon T, LaRosa D, Broussaud A (2004) VisioRock, an integrated vision technology for advanced control of comminution circuits. Miner Eng 17:1227–1235

    Article  Google Scholar 

  82. Simkus R, Dance A (1998) Tracking hardness and size: measuring and monitoring ROM ore properties at Highland Valley Copper. In: Proceedings of the Mine to Mill 1998, Brisbane, Australia, October 11–14

    Google Scholar 

  83. Herbst JA, Pate WT (1999) Object components for comminution system softsensor design. Powder Technol 105:424–429

    Article  Google Scholar 

  84. Schroder AJ (2000) Towards automated control of milling operations. In: IIR Conference-Crushing and Grinding Technologies for Mineral Extraction. Perth, Australia, 18/19 May 2000

    Google Scholar 

  85. Singh V, Mohan Rao S (2005) Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Miner Eng 18:1412–1420

    Article  Google Scholar 

  86. Petersen KRP, Aldrich C, Van Deventer JSJ (1998) Analysis of ore particles based on textural pattern recognition. Miner Eng 11:959–977

    Article  Google Scholar 

  87. Casali A, Gonzalez G, Vallebuona G, Perez C, Vargas R (2001) Grindability soft-sensor based on lithological composition and on-line measurements. Miner Eng 14:689–700

    Article  Google Scholar 

  88. Lepistö L, Kunttu I, Visa A (2005) Color-based classification of natural rock images using classifier combinations. In: Proceedings of the SCIA 2005, Joensuu, Finland, June 19-22 2005, 901–909

    Google Scholar 

  89. Paclik P, Verzakov S, Duin RPW (2005) Improving the maximum-likelihood co-occurrence classifier: a study on classification of inhomogeneous rock images. In: Proceedings of the SCIA 2005, Joensuu, Finland, June 19–22 2005 998–1088

    Google Scholar 

  90. Murtagh F, Qiao X, Crookes D, Walsh P, Muhammed Basheer PA, Long A, Starck JL (2005) A machine vision approach to the grading of crushed aggregate. Machine Vision Appl 16:229–235

    Article  Google Scholar 

  91. Van de Wouwer G, Scheunders P, Van Dyck D (1999) Statistical Texture Characterization from Discrete Wavelet Representations. IEEE T Image Process 8:592–598

    Article  Google Scholar 

  92. Haykin S (1999) Neural Networks - A Comprehensive Foundation. 2nd Edition, Prentice-Hall

    Google Scholar 

  93. Schölkpof B, Smola AJ (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge, MA

    Google Scholar 

  94. Jemwa GT, Aldrich C (2006) Kernel-based fault diagnosis on mineral processing plants. Miner Eng 19:1149–1162

    Article  Google Scholar 

  95. Esbensen KH, Edwards G, Eldridge NR (1993) Multivariate image analysis in forestry applications involving high resolution airborne imagery. In: 8th Scandinavian Conference on Image Analysis, NOBIM, Tromsø, 953–963

    Google Scholar 

  96. Liu JJ, MacGregor JF (2005) Modeling and optimization of product appearance: application to injection-molded plastic panels. Ind Eng Chem Res 44:4687–4696

    Article  Google Scholar 

  97. Gosselin R, Rodrigue D, Duchesne C (2008) On-line prediction of crystallinity spatial distribution across polymer films using NIR spectral imaging and chemometrics methods. Can J Chem Eng 86:869–878

    Article  Google Scholar 

  98. Bruwer MJ, MacGregor JF, Noseworthy MD (2007) Dynamic contrast-enhanced MRI diagnostics in oncology via principal component analysis. J Chemom 22:708–716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Duchesne, C. (2010). Multivariate Image Analysis in Mineral Processing. In: Sbárbaro, D., del Villar, R. (eds) Advanced Control and Supervision of Mineral Processing Plants. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84996-106-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-106-6_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-105-9

  • Online ISBN: 978-1-84996-106-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics