Skip to main content

Systems and Engineering Applications

  • Chapter
Identification of Damage Using Lamb Waves

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 48))

  • 3267 Accesses

Abstract

The practical implementation of Lamb-wave-based damage identification techniques in actual engineering structures often involves challenges and difficulties, and it may require comprehensive knowledge in system design, development and integration. As a result of intensive research and development in this area over the past few years and recent technical breakthroughs such as active sensor networks and high performance instruments, the practicability of Lamb-wave-based damage identification has been substantially consolidated, and some applications have attained commercial development. This chapter embraces representative deployment of such techniques in actual engineering structures, following a brief introduction to the development of systems (hardware and software) for practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonard, K.R., Hinders, M.K.: Guided wave helical ultrasonic tomography of pipes. Journal of the Acoustical Society of America 114(2), 767–774 (2003)

    Article  Google Scholar 

  2. Leonard, K.R., Hinders, M.K.: Lamb wave tomography of pipe-like structures. Ultrasonics 43, 574–583 (2005)

    Article  Google Scholar 

  3. Lowe, M.J.S., Alleyne, D.N., Cawley, P.: Defect detection in pipes using guided waves. Ultrasonics 36, 147–154 (1998)

    Article  Google Scholar 

  4. Alleyne, D.N., Pavlakovic, B., Lowe, M.J.S., Cawley, P.: Rapid long-range inspection of chemical plant pipework using guided waves. Insight 43(2), 93–96 (2001)

    Google Scholar 

  5. Alleyne, D.N., Cawley, P.: The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. Journal of Nondestructive Evaluation 15(1), 11–20 (1996)

    Article  Google Scholar 

  6. Alleyne, D.N., Cawley, P.: Long range propagation of Lamb waves in chemical plant pipework. Materials Evaluation 55, 504–508 (1997)

    Google Scholar 

  7. Alleyne, D.N., Cawley, P., Lank, A.M., Mudge, P.J.: The Lamb wave inspection of chemical plant pipework. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 16, pp. 1269–1276. Plenum Press, New York (1997)

    Google Scholar 

  8. Lu, Y., Ye, L., Wang, D., Zhou, L.-M., Cheng, L.: Piezo-activated guided wave propagation and interaction with damage in tubular structures. Submitted to Smart Structures and Systems

    Google Scholar 

  9. Rose, J.L., Jiao, D., Spanner Jr., J.: Ultrasonic guided wave NDE for piping. Materials Evaluation 54(11), 1310–1313 (1996)

    Google Scholar 

  10. Quarry, M.J., Rose, J.L.: Multimode guided wave inspection of piping using comb transducers. Materials Evaluation 57, 1089–1090 (1999)

    Google Scholar 

  11. Sun, Z., Rose, J.L., Quarry, M., Chin, D.: Flexural mode tuning in pipe inspection. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 21, pp. 262–269. American Institute of Physics, New York (2002)

    Google Scholar 

  12. Rose, J.L.: A baseline and vision of ultrasonic guided wave inspection potential. Journal of Pressure Vessel Technology 124, 273–282 (2002)

    Article  Google Scholar 

  13. Alleyne, D.N., Lowe, M.J.S., Cawley, P.: The reflection of guided waves from circumferential notches in pipes. Journal of Applied Mechanics 65, 635–641 (1998)

    Article  Google Scholar 

  14. Long, R., Lowe, M., Cawley, P.: Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes. Ultrasonics 41, 509–519 (2003)

    Article  Google Scholar 

  15. Na, W.-B., Kundu, T.: Underwater pipeline inspection using guided waves. Journal of Pressure Vessel Technology 124, 196–200 (2002)

    Article  Google Scholar 

  16. Zhang, L., Gavigan, B.J., Rose, J.L.: High frequency guided wave natural focusing pipe inspection with frequency and angle tuning. Journal of Pressure Vessel Technology 128, 433–438 (2006)

    Article  Google Scholar 

  17. Sun, Z., Zhang, L., Rose, J.L.: Flexural torsional guided wave mechanics and focusing in pipe. Journal of Pressure Vessel Technology 127, 471–478 (2005)

    Article  Google Scholar 

  18. Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in cylindrical pipes and plates using piezo-actuated Lamb waves. Smart Materials and Structures 14, 1325–1342 (2005)

    Article  Google Scholar 

  19. Siqueira, M.H.S., Gatts, C.E.N., da Silva, R.R., Rebello, J.M.A.: The use of ultrasonic guided waves and wavelets analysis in pipe inspection. Ultrasonics 41, 785–797 (2004)

    Article  Google Scholar 

  20. Hinders, M.: Guided wave helical ultrasound tomography of pipes and tubes, http://www.as.wm.edu/Faculty/Hinders/HUT-W&M.pdf

  21. Dalton, R.P., Cawley, P., Lowe, M.S.J.: The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure. Journal of Nondestructive Evaluation 20(1), 29–46 (2001)

    Article  Google Scholar 

  22. Ihn, J.-B., Chang, F.-K.: Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring: An International Journal 7(1), 5–19 (2008)

    Article  Google Scholar 

  23. Giurgiutiu, V., Zagrai, A., Bao, J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Structural Health Monitoring: An International Journal 1, 41–61 (2002)

    Article  Google Scholar 

  24. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart Materials and Structures 16, 1208–1217 (2007)

    Article  Google Scholar 

  25. Zhao, X., Qian, T., Mei, G., Kwan, C., Zane, R., Walsh, C., Paing, T., Popovic, Z.: Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. wireless approaches. Smart Materials and Structures 16, 1218–1225 (2007)

    Article  Google Scholar 

  26. Silva, M.Z., Gouyon, R., Lepoutre, F.: Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis. Ultrasonics 41, 301–305 (2003)

    Article  Google Scholar 

  27. Giurgiutiu, V., Zagrai, A., Bao, J.: Damage identification in aging aircraft structures with piezoelectric wafer active sensors. Journal of Intelligent Material Systems and Structures 15, 673–687 (2004)

    Article  Google Scholar 

  28. Yuan, S., Liang, D., Shi, L., Zhao, X., Wu, J., Li, G., Qiu, L.: Recent progress on distributed structural health monitoring research at NUAA. Journal of Intelligent Material Systems and Structures 19, 373–386 (2008)

    Article  Google Scholar 

  29. Lee, J.-R., Ryu, C.-Y., Koo, B.-Y., Kang, S.-G., Hong, C.-S., Kim, C.-G.: In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system. Smart Materials and Structures 12, 147–155 (2003)

    Article  Google Scholar 

  30. Harri, K., Guillaume, P., Vanlanduit, S.: On-line damage detection on a wing panel using transmission of multisine ultrasonic waves. NDT&E International 41(4), 312–317 (2008)

    Google Scholar 

  31. Wong, C.K.W., Chiu, W.K., Rajic, N., Galea, S.C.: Can stress waves be used for monitoring sub-surface defects in repaired structures? Composite Structures 76, 199–208 (2006)

    Article  Google Scholar 

  32. Chen, H.G., Yan, Y.J., Chen, W.H., Jiang, J.S., Yu, L., Wu, Z.Y.: Early damage detection in composite wingbox structures using Hilbert-Huang transform and genetic algorithm. Structural Health Monitoring: An International Journal 6(4), 281–297 (2007)

    Article  Google Scholar 

  33. Grondel, S., Assaad, J., Delebarre, C., Moulin, E.: Health monitoring of a composite wingbox structure. Ultrasonics 42, 819–824 (2004)

    Article  Google Scholar 

  34. Monnier, T.: Lamb waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers. Journal of Intelligent Material Systems and Structures 17, 411–421 (2006)

    Article  Google Scholar 

  35. Giurgiutiu, V., Zagrai, A., Bao, J.: Embedded active sensors for in-situ structural health monitoring of thin-wall structures. Journal of Pressure Vessel Technology 124, 293–302 (2002)

    Article  Google Scholar 

  36. Schwartz, W.G., Read, M.E., Kremer, M.J., Hinders, M.K., Smith, B.T.: Lamb wave tomographic imaging system for aircraft structural health assessment. In: Proceedings of the SPIE, vol. 3586, pp. 292–296 (1999)

    Google Scholar 

  37. Hay, T.R., Royer, R.L., Gao, H., Zhao, X., Rose, J.L.: A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detection. Smart Materials and Structures 15, 946–951 (2006)

    Article  Google Scholar 

  38. Ihn, J.-B., Chang, F.-K.: Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. validation using riveted joints and repair patches. Smart Materials and Structures 13, 621–630 (2004)

    Article  Google Scholar 

  39. di Scalea, F.L., Matt, H., Bartoli, I., Coccia, S., Park, G., Farrar, C.: Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers. Journal of Intelligent Material Systems and Structures 18, 373–388 (2007)

    Google Scholar 

  40. Matt, H., Marzani, A., Restivo, G., Oliver, J., di Scalea, F.L., Kosmatka, J., Sohn, H., Park, G., Farrar, C.: A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles. In: Proceedings of the 23rd International Modal Analysis Conference (IMAC), Orlando, FL, USA, January 31- February 3 (2005)

    Google Scholar 

  41. Matt, H., Bartoli, I., di Scalea, F.L.: Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures. Journal of the Acoustical Society of America 118, 2240–2252 (2005)

    Article  Google Scholar 

  42. Rose, J.L., Rajana, K.M., Hansch, K.T.: Ultrasonic guided waves for NDE of adhesively bonded structures. Journal of Adhesion 50, 71–82 (1995)

    Article  Google Scholar 

  43. Yang, J., Chang, F.-K., Derriso, M.M.: Design of a built-in health monitoring system for thermal protection panels. In: Proceedings of the SPIE, vol. 5046, pp. 59–70 (2003)

    Google Scholar 

  44. Giurgiutiu, V., Zagrai, A.N., Bao, J., Redmond, J.M., Roach, D., Rackow, K.: Active sensors for health monitoring of aging aerospace structures. International Journal of Condition Monitoring and Diagnostic Engineering Management 6(1), 3–21 (2003)

    Google Scholar 

  45. Monnier, T., Jayet, Y., Guy, P., Baboux, J.C.: Aging and damage assessment of composite structures using embedded piezoelectric sensors. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 19, pp. 1269–1276. Springer, Heidelberg (2000)

    Google Scholar 

  46. Sealea, M.D., Smith, B.T., Prosser, W.H.: Lamb wave assessment of fatigue and thermal damage in composites. Journal of the Acoustical Society of America 103(5), 2416–2424 (1998)

    Article  Google Scholar 

  47. Grondel, S., Delebarre, C., Assaad, J., Dupuis, J.-P., Reithler, L.: Fatigue crack monitoring of riveted aluminium strap joins by Lamb wave analysis and acoustic emission measurement techniques. NDT&E International 35, 137–146 (2002)

    Article  Google Scholar 

  48. Ihn, J.-B., Chang, F.-K.: Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. diagnostics. Smart Materials and Structures 13, 609–620 (2004)

    Article  Google Scholar 

  49. Qing, X.P., Chan, H.-L., Beard, S.J., Kumar, A.: An active diagnostic system for structural health monitoring of rocket engines. Journal of Intelligent Material Systems and Structures 17, 619–628 (2006)

    Article  Google Scholar 

  50. Demcenko, A., Zukauskas, E., Kazys, R., Voleisis, A.: Investigation of interaction of the Lamb wave with delamination type defect in GLARE composite using air-coupled ultrasonic technique. In: Proceedings of the Forum Acusticum, pp. 2817–2822 (2005)

    Google Scholar 

  51. Edmonds, J., Hickman, G.A.: Damage detection and identification in composite aircraft components. In: Proceedings of the IEEE Conference on Aerospace, Big Sky, MT, USA, March 18-25, 2000, pp. 263–269 (2000)

    Google Scholar 

  52. Beard, M.D., Lowe, M., Cawley, P.: Development of a guided wave inspection technique for rock bolts. Insight 44(1), 19–24 (2002)

    Google Scholar 

  53. Pu, S.H., Cegla, F., Drozdz, M., Lowe, M.J.S., Cawley, P., Buenfeld, N.R.: Monitoring the setting and early hardening of concrete using an ultrasonic waveguide. Insight 46(6), 350–354 (2004)

    Article  Google Scholar 

  54. Rose, J.L., Avioli, M.J., Song, W.-J.: Application and potential of guided wave rail inspection. Insight 44(6), 353–358 (2002)

    Google Scholar 

  55. Wilcox, P., Evans, M., Pavlakovic, B., Alleyne, D.N., Vine, K., Cawley, P., Lowe, M.: Guided wave testing of rail. Insight 45(6), 413–420 (2003)

    Article  Google Scholar 

  56. Barke, D., Chiu, W.K.: Structural health monitoring in the railway industry: a review. Structural Health Monitoring: An International Journal 4, 81–93 (2005)

    Article  Google Scholar 

  57. Rizzo, P., di Scalea, F.L.: Feature extraction for defect detection in strands by guided ultrasonic waves. Structural Health Monitoring: An International Journal 5(3), 297–308 (2006)

    Article  Google Scholar 

  58. Wu, F., Chang, F.-K.: Debond detection using embedded piezoelectric elements for reinforced concrete structures - part I: experiment. Structural Health Monitoring: An International Journal 5(1), 5–15 (2006)

    Article  MathSciNet  Google Scholar 

  59. Wang, W.D.: Applications of guided wave techniques in the petrochemical industry. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 18A, pp. 277–284. Plenum Press, New York (1999)

    Google Scholar 

  60. Park, S., Yun, C.-B., Roh, Y., Lee, J.-J.: PZT-based active damage detection techniques for steel bridge components. Smart Materials and Structures 15, 957–966 (2006)

    Article  Google Scholar 

  61. Wu, Z., Qing, X.P., Ghosh, K., Karbhar, V., Chang, F.-K.: Health monitoring of bonded composite repair in bridge rehabilitation. Smart Materials and Structures (in press)

    Google Scholar 

  62. Park, S., Yun, C.-B., Roh, Y.: Damage diagnostics on a welded zone of a steel truss member using an active sensing network system. NDT&E International 40, 71–76 (2007)

    Article  Google Scholar 

  63. Silk, M.G., Bainton, K.F.: The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics 17, 11–19 (1979)

    Article  Google Scholar 

  64. Rose, J.L., Ditri, J.J., Pilarski, A., Rajana, K., Carr, F.T.: A guided wave inspection technique for nuclear steam generator tubing. NDT&E International 27, 307–310 (1994)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z., Ye, L. (2009). Systems and Engineering Applications. In: Identification of Damage Using Lamb Waves. Lecture Notes in Applied and Computational Mechanics, vol 48. Springer, London. https://doi.org/10.1007/978-1-84882-784-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-784-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-783-7

  • Online ISBN: 978-1-84882-784-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics