Skip to main content

Valiant Load-Balancing: Building Networks That Can Support All Traffic Matrices

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

This paper is a brief survey on how Valiant load-balancing (VLB) can be used to build networks that can efficiently and reliably support all traffic matrices. We discuss how to extend VLB to networks with heterogeneous capacities, how to protect against failures in a VLB network, and how to interconnect two VLB networks. For the readers’ reference, included also is a list of work that uses VLB in various aspects of networking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We focus on failures in the logical topology, and since several logical links can share a physical link, a physical failure can correspond to multiple logical failures.

  2. 2.

    If a node fails, we discard the traffic originating from or terminating at this node.

References

  1. R. Aleliunas. Randomized parallel communication (preliminary version). In PODC ’82: Proceedings of the first ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pages 60–72, 1982.

    Google Scholar 

  2. K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies, E. Kohler, M. Manesh, S. Nedevschi, and S. Ratnasamy. Can software routers scale? In PRESTO ’08: Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow, pages 21–26, 2008.

    Google Scholar 

  3. P. Bernasconi, J. Gripp, D. Neilson, J. Simsarian, D. Stiliadis, A. Varma, and M. Zirngibl. Architecture of an integrated router interconnected spectrally (IRIS). High Performance Switching and Routing, 2006 Workshop on, pages 8 pp.–, June 2006.

    Google Scholar 

  4. C.-S. Chang, D.-S. Lee, and Y.-S. Jou. Load balanced Birkhoff-von Neumann switches, Part I: One-stage buffering. Computer Communications, 25(6):611–622, 2002.

    Article  Google Scholar 

  5. C.-S. Chang, D.-S. Lee, and C.-M. Lien. Load balanced Birkhoff-von Neumann switches, Part II: Multi-stage buffering. Computer Communications, 25(6):623–634, 2002.

    Article  Google Scholar 

  6. A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Towards a next generation data center architecture: scalability and commoditization. In PRESTO ’08: Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow, pages 57–62, 2008.

    Google Scholar 

  7. M. Henrion, K. Schrodi, D. Boettle, M. De Somer, and M. Dieudonne. Switching network architecture for ATM based broadband communications. Switching Symposium, 1990. XIII International, 5:1–8, 1990.

    Google Scholar 

  8. I. Keslassy, C.-S. Chang, N. McKeown, and D.-S. Lee. Optimal load-balancing. In Proc. IEEE INFOCOM, 2005.

    Google Scholar 

  9. I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, and N. McKeown. Scaling Internet routers using optics. Proceedings of ACM SIGCOMM ’03, Computer Communication Review, 33(4):189–200, October 2003.

    Google Scholar 

  10. I. Keslassy, M. Kodialam, T. Lakshman, and D. Stiliadis. Scheduling schemes for delay graphs with applications to optical packet networks. High Performance Switching and Routing (HPSR), pages 99–103, 2004.

    Google Scholar 

  11. M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta. A Versatile Scheme for Routing Highly Variable Traffic in Service Overlays and IP Backbones. In Proc. IEEE INFOCOM, April 2006.

    Google Scholar 

  12. M. Kodialam, T. V. Lakshman, and S. Sengupta. Efficient and robust routing of highly variable traffic. In HotNets III, November 2004.

    Google Scholar 

  13. D. Mitra and R. A. Cieslak. Randomized parallel communications on an extension of the omega network. J. ACM, 34(4):802–824, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Nagesh, V. Poosala, V. Kumar, P. Winzer, and M. Zirngibl. Load-balanced architecture for dynamic traffic. In Optical Fiber Communication Conference, March 2005.

    Google Scholar 

  15. R. Prasad, P. Winzer, S. Borst, and M. Thottan. Queuing delays in randomized load balanced networks. In Proc. IEEE INFOCOM, May 2007.

    Google Scholar 

  16. F. B. Shepherd and P. J. Winzer. Selective randomized load balancing and mesh networks with changing demands. Journal of Optical Networking, 5:320–339, 2006.

    Article  Google Scholar 

  17. A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Department of Electrical Engineering, Stanford University, 2005.

    Google Scholar 

  18. A. Singh, W. J. Dally, B. Towles, and A. K. Gupta. Locality-preserving randomized oblivious routing on torus networks. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium on parallel algorithms and architectures, pages 9–13, 2002.

    Google Scholar 

  19. L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing, 11(2):350–361, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. van Haalen, R. Malhotra, and A. de Heer. Optimized routing for providing Ethernet LAN services. Communications Magazine, IEEE, 43(11):158–164, Nov. 2005.

    Article  Google Scholar 

  21. P. J. Winzer, F. B. Shepherd, P. Oswald, and M. Zirngibl. Robust network design and selective randomized load balancing. 31st European Conference on Optical Communication (ECOC), 1:23–24, September 2005.

    Google Scholar 

  22. R. Zhang-Shen, M. Kodialam, and T. V. Lakshman. Achieving bounded blocking in circuit-switched networks. IEEE INFOCOM 2006, pages 1–9, April 2006.

    Google Scholar 

  23. R. Zhang-Shen and N. McKeown. Designing a Predictable Internet Backbone Network. In HotNets III, November 2004.

    Google Scholar 

  24. R. Zhang-Shen and N. McKeown. Designing a predictable Internet backbone with Valiant Load-Balancing. Thirteenth International Workshop on Quality of Service (IWQoS), 2005.

    Google Scholar 

  25. R. Zhang-Shen and N. McKeown. Designing a Fault-Tolerant Network Using Valiant Load-Balancing. Proc. IEEE INFOCOM, pages 2360–2368, April 2008.

    Google Scholar 

  26. R. Zhang-Shen and N. McKeown. Guaranteeing Quality of Service to Peering Traffic. Proc. IEEE INFOCOM, pages 1472–1480, April 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang-Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zhang-Shen, R. (2010). Valiant Load-Balancing: Building Networks That Can Support All Traffic Matrices. In: Cormode, G., Thottan, M. (eds) Algorithms for Next Generation Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-765-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-765-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-764-6

  • Online ISBN: 978-1-84882-765-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics