Skip to main content

Aqueous and Nonaqueous Sol-Gel Chemistry

  • Chapter

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The most widely used synthetic technique for bulk metal oxides has been the ceramic method, which is based on the direct reaction of powder mixtures. These reactions are completely controlled by the diffusion of the atomic or ionic species through the reactants and products. To bring the reaction partners sufficiently close together and to provide high mobility, these solid state processes require high temperature and small particle sizes. Although the harsh reaction conditions only lead to thermodynamically stable phases, preventing the formation of metastable solids, these approaches gave access to a large number of new solid compounds, enabling the development of structureproperties relationships. However, in comparison to organic chemistry, where highly sophisticated synthetic pathways are employed to make and break chemical bonds in a controlled way, the ceramic method is a rather crude approach. It is therefore no surprise that for the size- and shape-controlled synthesis of nanoparticles especially liquid-phase routes represent the most promising alternatives. In contrast to solid-state processes, but analogous to organic chemistry, “chimie douce” approaches offer the possibility to control the reaction pathways on a molecular level during the transformation of the precursor species to the final product, enabling the synthesis of nanoparticles with well-defined and uniform crystal morphologies and with superior purity and homogeneity [12].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta, S., Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: A general nonhydrolytic sol-gel route to oxides. Mater. Res. Soc. Symp. Proc. 346, 43–64 (1994)

    Google Scholar 

  2. Arnal, P., Corriu, R.J.P., Leclercq, D., Mutin, P.H., Vioux, A.: Preparation of transition metal oxides by a nonhydrolytic sol-gel process. Mater. Res. Soc. Symp. Proc. 346, 339–344 (1994)

    Google Scholar 

  3. Bates, S.E., Buhro, W.E.: Aldolate complexes as thermal precursors to metal-oxides - a new nonhydrolytic sol-gel strategy. Abstr. Pap. Am. Chem. Soc. 205, 83INOR (1993)

    Google Scholar 

  4. Bibby, D.M., Dale, M.P.: Synthesis of silica-sodalite from non-aqueous systems. Nature 317, 157–158 (1985)

    Article  Google Scholar 

  5. Borm, P.J.A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D., Oberdorster, E.: The potential risk of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 3, 11–45 (2006)

    Article  Google Scholar 

  6. Bradley, D.C., Mehrotra, R.C., Rothwell, I.P., Singh, A.: Alkoxo and aryloxo derivatives of metals. Academic Press: London (2001)

    Google Scholar 

  7. Brinker, C.J., Scherer, G.W.: Sol-gel science. Academic Press, San Diego (1990)

    Google Scholar 

  8. Corriu, R., Leclercq, D., Lefevre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process. Chem. Mater. 4, 961–963 (1992)

    Article  Google Scholar 

  9. Corriu, R.J.P., Leclercq, D.: Recent developments of molecular chemistry for sol-gel processes. Angew. Chem. Int. Ed. 35, 1420–1436 (1996)

    Article  Google Scholar 

  10. Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process. J. Non-Cryst. Solids 146, 301–303 (1992)

    Article  Google Scholar 

  11. Corriu, R.J.P., Leclercq, D., Lefevre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic metal-oxide gels by a non-hydrolytic sol-gel process. J. Mater. Chem. 2, 673–674 (1992)

    Article  Google Scholar 

  12. Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004)

    Article  Google Scholar 

  13. Dearing, A.W., Reid, E.E.: Alkyl orthosilicates. J. Am. Chem. Soc. 50, 3058–3062 (1928)

    Article  Google Scholar 

  14. Ebelmen: Untersuchungen über die Verbindungen der Borsäure und Kieselsäure mit Aether. Annal. Chem. Pharm. 57, 334 (1846)

    Google Scholar 

  15. Fanelli, A.J., Burlew, J.V.: Preparation of fine alumina powder in alcohol. J. Am. Ceram. Soc. 69, C174–C175 (1986)

    Article  Google Scholar 

  16. Gerrard, W., Kilburn, K.D.: Correlation between reactivity of the 1-carbon atom in alcohols, and certain properties of alkoxysilanes. J. Chem. Soc. pp. 1536–1539 (1956)

    Google Scholar 

  17. Gerrard, W., Woodhead, A.H.: Interaction of alcohols with silicon tetrachloride. J. Chem. Soc. pp. 519–522 (1951)

    Google Scholar 

  18. Goel, S.C., Chiang, M.Y., Gibbons, P.C., Buhro, W.E.: New chemistry for the sol-gel process: Acetone as a new condensation reagent. Mater. Res. Soc. Symp. Proc. 271, 3–13 (1992)

    Google Scholar 

  19. Hay, J.N., Raval, H.M.: Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process. Chem. Mater. 13, 3396–3403 (2001)

    Article  Google Scholar 

  20. Hench, L.L., West, J.K.: The sol-gel process. Chem. Rev. 90, 33–72 (1990)

    Article  Google Scholar 

  21. Hubert-Pfalzgraf, L.G.: Some aspects of homo and heterometallic alkoxides based on functional alkohols. Coord. Chem. Rev. 178–180, 967–997 (1998)

    Article  Google Scholar 

  22. Inoue, M.: Glycothermal synthesis of metal oxides. J. Phys.: Condens. Matter 16, S1291–S1303 (2004)

    Google Scholar 

  23. Inoue, M., Kitamura, K., Tanino, H., Nakayama, H., Inui, T.: Alcohothermal treatments of gibbsite: Mechanisms for the formation of boehmite. Clays Clay Miner. 37, 71–80 (1989)

    Article  Google Scholar 

  24. Inoue, M., Kominami, H., Inui, T.: Thermal transformation of χ-alumina formed by thermal decomposition of aluminum alkoxide in organic media. J. Am. Ceram. Soc. 75, 2597–2598 (1992)

    Article  Google Scholar 

  25. Inoue, M., Kominami, H., Inui, T.: Novel synthetic method for the catalytic use of thermally stable zirconia: Thermal decomposition of zirconium alkoxides in organic media. Appl. Catal., A 97, L25–L30 (1993)

    Article  Google Scholar 

  26. Inoue, M., Kominami, H., Otsu, H., Inui, T.: Synthesis of microcrystalline titania in organic media. Nippon Kagaku Kaishi pp. 1364–1366 (1991)

    Google Scholar 

  27. Ivanda, M., Music, S., Popovic, S., Gotic, M.: XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol-gel method based on an esterification reaction. J. Mol. Struct. 481, 645–649 (1999)

    Article  Google Scholar 

  28. Jansen, M., Guenther, E.: Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process. Chem. Mater. 7, 2110–2114 (1995)

    Article  Google Scholar 

  29. Jolivet, J.P.: Metal oxide chemistry and synthesis. John Wiley & Sons Ltd.: Chichester, England (2000)

    Google Scholar 

  30. Jun, Y.W., Choi, J.S., Cheon, J.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414–3439 (2006)

    Article  Google Scholar 

  31. Kominami, H., Inoue, M., Inui, T.: Formation of niobium double oxides by the glycothermal method. Catal. Today 16, 309–317 (1993)

    Article  Google Scholar 

  32. Kominami, H., Kato, J., Murakami, S., Kera, Y., Inoue, M., Inui, T., Ohtani, B.: Synthesis of titanium IV oxide of ultra-high photocatalytic activity: High-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols. J. Mol. Catal. A: Chem. 144, 165–171 (1999)

    Article  Google Scholar 

  33. Livage, J., Henry, M., Sanchez, C.: Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18, 259–341 (1988)

    Article  Google Scholar 

  34. Mehrotra, R.C., Singh, A.: Recent trends in metal alkoxide chemistry. Prog. Inorg. Chem. 46, 239–454 (1997)

    Article  Google Scholar 

  35. de Mello Donega, C., Liljeroth, P., Vanmaekelbergh, D.: Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005)

    Article  Google Scholar 

  36. Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)

    Article  Google Scholar 

  37. Niederberger, M.: Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793–800 (2007)

    Article  Google Scholar 

  38. Niederberger, M., Antonietti, M.: Nanomaterials chemistry: Recent developments and new directions, chap. Nonaqueous sol-gel routes to nanocrystalline metal oxides, pp. 119–138. Wiley-VCH (2007)

    Google Scholar 

  39. Niederberger, M., Garnweitner, G.: Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J. 12, 7282–7302 (2006)

    Article  Google Scholar 

  40. Park, J., Joo, J., Kwon, S.G., Jang, Y., Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007)

    Article  Google Scholar 

  41. Pinna, N., Niederberger, M.: Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 47, 5292–5304 (2008)

    Article  Google Scholar 

  42. Ridge, D., Todd, M.: Studies in the formation mechanisms of alkyl orthosilicates. J. Chem. Soc. pp. 2637–2640 (1949)

    Google Scholar 

  43. Rochow, E.G., Gingold, K.: The conversion of chlorosilanes to siloxanes by dimethylformamide. J. Am. Chem. Soc. 76, 4852–4855 (1954)

    Article  Google Scholar 

  44. Schleich, D.M., Zhang, Y.: Preparation of some metal ferrite MFe2O4 thin films through a nonaqueous sol method. Mater. Res. Bull. 30, 447–452 (1995)

    Article  Google Scholar 

  45. Schwarz, R., Kuchen, W.: Über die Ätherspaltung mit Siliziumtetrachlorid. Chem. Ber. 89, 169–178 (1956)

    Article  Google Scholar 

  46. Trentler, T.J., Denler, T.E., Bertone, J.F., Agrawal, A., Colvin, V.L.: Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 121, 1613–1614 (1999)

    Article  Google Scholar 

  47. Turova, N.Y., Turevskaya, E.P.: The chemistry of metal alkoxides. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  48. Vioux, A.: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292–2299 (1997)

    Article  Google Scholar 

  49. Zappel, A.: The reaction of chlorosilanes with benzaldehyde. J. Am. Chem. Soc. 77, 4228 (1955)

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2009). Aqueous and Nonaqueous Sol-Gel Chemistry. In: Metal Oxide Nanoparticles in Organic Solvents. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-671-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-671-7_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-670-0

  • Online ISBN: 978-1-84882-671-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics