Skip to main content

Comparative Use of Radionuclide Stress Testing, Coronary Artery Calcium Scanning, and Noninvasive Coronary Angiography for Diagnostic and Prognostic Cardiac Assessment

  • Chapter
  • First Online:
  • 1872 Accesses

Abstract

Single-photon emission computed tomography (SPECT) or positron emission tomography (PET) myocardial perfusion scintigraphy (MPS) is a well-established noninvasive imaging modality that is a core element in evaluation of patients with stable chest pain syndromes. Stress SPECT MPS is the most commonly utilized stress imaging technique for patients with suspected or known coronary artery disease (CAD) and has a robust evidence base including the support of numerous clinical guidelines. By comparison, cardiac computed tomography (CT) is a more recently developed method, providing noninvasive approaches for imaging coronary atherosclerosis and coronary artery stenosis. After being in use for well over a decade, noncontrast CT for imaging the extent of coronary artery calcification (CAC) has an extensive evidence base supporting its use in CAD prevention. Contrast-enhanced CT for noninvasive CT coronary angiography (CCTA) is relatively new, but has a rapidly growing evidence base regarding diagnosing obstructive CAD and assessing risk. It is likely that noncontrast CT or CCTA for assessment of extent of atherosclerosis will become an increasing part of mainstream cardiovascular imaging practices as a first-line test. In some patients, further ischemia testing with MPS will be required. Similarly, MPS will continue to be widely used as a first-line test, and, in some patients, further anatomic definition of atherosclerosis with CT will also be appropriate. This review also provides a synopsis of the available literature on imaging that integrates both CT and MPS in strategies for the assessment of asymptomatic patients for their atherosclerotic coronary disease burden and risk as well as symptomatic patients for diagnosis and guiding management. We propose possible risk-based strategies through which imaging might be used to identify asymptomatic candidates for more intensive prevention and risk factor modification strategies as well as symptomatic patients who would benefit from referral to invasive coronary angiography (ICA) for consideration of revascularization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berman DS, Hachamovitch R, Shaw LJ, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: assessment of patients with suspected coronary artery disease. J Nucl Med. 2006;47:74–82.

    PubMed  Google Scholar 

  2. Berman DS, Hachamovitch R, Shaw LJ, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med. 2006;47:1107–1118.

    PubMed  Google Scholar 

  3. Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54(1):1–15.

    Article  PubMed  Google Scholar 

  4. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003;108:1404–1418.

    Article  PubMed  Google Scholar 

  5. Berman DS, Hachamovitch R, Shaw LJ, Hayes S, Germano G. Nuclear cardiology. In: Fuster V, OR RA, Walsh RA, Poole-Wilson P, eds. Hurst’s The Heart. 12th ed. New York: McGraw-Hill Companies; 2008:544–576.

    Google Scholar 

  6. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Stress myocardial perfusion SPECT is clinically effective and cost-effective in risk-stratification of patients with a high likelihood of CAD but no known CAD. J Am Coll Cardiol. 2004;43:200–208.

    Article  PubMed  Google Scholar 

  7. Hendel RC, Berman DS, Di Carli MF, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate use criteria for cardiac radionuclide imaging. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine Endorsed by the American College of Emergency Physicians. J Am Coll Cardiol. 2009;53(23):2201–2229.

    Article  PubMed  Google Scholar 

  8. Hachamovitch R, Hayes S, Friedman JD, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol. 2003;41(8):1329–1340.

    Article  PubMed  Google Scholar 

  9. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–185.

    Article  PubMed  Google Scholar 

  10. Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina – summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation. 2003;107(1):149–158.

    Article  PubMed  Google Scholar 

  11. Kang X, Berman DS, Lewin HC, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography in patients with diabetes mellitus. Am Heart J. 1999;138(6 pt 1):1025–1032.

    Article  PubMed  CAS  Google Scholar 

  12. Santos MM, Abidov A, Hayes SW, et al. Prognostic implications of myocardial perfusion SPECT in patients with atrial fibrillation [abstract]. J Nucl Med. 2002;43:98P.

    Google Scholar 

  13. Abidov A, Rozanski A, Hachamovitch R, et al. Complaints of dyspnea among patients referred for cardiac stress testing. New Engl J Med. 2005;353:1889–1898.

    Article  PubMed  CAS  Google Scholar 

  14. Hakeem A, Bhatti S, Dillie KS, et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation. 2008;118(24):2540–2549.

    Article  PubMed  Google Scholar 

  15. Hachamovitch R, Kang X, Amanullah AM, et al. Prognostic implications of myocardial perfusion single-photon emission computed tomography in the elderly. Circulation. 2009;120(22):2197–2206.

    Article  PubMed  Google Scholar 

  16. Berman DS, Kang X, Hayes SW, et al. Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management. J Am Coll Cardiol. 2003;41(7):1125–1133.

    Article  PubMed  Google Scholar 

  17. Azarbal B, Hayes SW, Lewin HC, Hachamovitch R, Cohen I, Berman DS. The incremental prognostic value of percentage of heart rate reserve achieved over myocardial perfusion single-photon emission computed tomography in the prediction of cardiac death and all-cause mortality: superiority over 85% of maximal age-predicted heart rate. J Am Coll Cardiol. 2004;44:423–430.

    Article  PubMed  Google Scholar 

  18. Abidov A, Bax JJ, Hayes SW, et al. Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J Am Coll Cardiol. 2003;42:1818–1825.

    Article  PubMed  Google Scholar 

  19. Staniloff HM, Forrester JS, Berman DS, Swan HJ. Prediction of death, myocardial infarction, and worsening chest pain using thallium scintigraphy and exercise electrocardiography. J Nucl Med. 1986;27(12):1842–1848.

    PubMed  CAS  Google Scholar 

  20. Abidov A, Hachamovitch R, Hayes SW, et al. Are shades of gray prognostically useful in reporting myocardial perfusion single-photon emission computed tomography? Circulation Imaging. 2009;2:290–298.

    Article  Google Scholar 

  21. Mowatt G, Vale L, Brazzelli M, et al. Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess. 2004;8(30):iii-iv, 1–207.

    Google Scholar 

  22. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–2907.

    Article  PubMed  Google Scholar 

  23. Kaminek M, Myslivecek M, Skvarilova M, et al. Increased prognostic value of combined myocardial perfusion SPECT imaging and the quantification of lung Tl-201 uptake. Clin Nucl Med. 2002;27(4):255–260.

    Article  PubMed  Google Scholar 

  24. Sharir T, Germano G, Kavanagh PB, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography, Circulation. 1999;100:1035–1042.

    Article  PubMed  CAS  Google Scholar 

  25. Sharir T, Kang X, Germano G, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol. 2006;13:495–506.

    Article  PubMed  Google Scholar 

  26. Sharir T, Bacher-Stier C, Dhar S, et al. Identification of severe and extensive coronary artery disease by postexercise regional wall motion abnormalities in Tc-99m sestamibi gated single-photon emission computed tomography. Am J Cardiol. 2000;86(11):1171–1175.

    Article  PubMed  CAS  Google Scholar 

  27. Abidov A, Hachamovitch R, Rozanski A, et al. Prognostic implications of atrial fibrillation in patients undergoing myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 2004;44(5):1062–1070.

    Article  PubMed  Google Scholar 

  28. Klein J, Chao SY, Berman DS, Rozanski A. Is ‘silent’ myocardial ischemia really as severe as symptomatic ischemia? The analytical effect of patient selection biases. Circulation. 1994;89(5):1958–1966.

    Article  PubMed  CAS  Google Scholar 

  29. Cerqueira MD, Nguyen P, Staehr P, Underwood R, Iskandrian AE. Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfsuion imaging. J Am Coll Cardiol Img. 2008;1:307–316.

    Google Scholar 

  30. Abbott BG, Afshar M, Berger AK, Wackers FJ. Prognostic significance of ischemic electrocardiographic changes during adenosine infusion in patients with normal myocardial perfusion imaging. J Nucl Cardiol. 2003;10(1):9–16.

    Article  PubMed  Google Scholar 

  31. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–542.

    Article  PubMed  Google Scholar 

  32. Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22(5):1455–1464.

    Article  PubMed  CAS  Google Scholar 

  33. Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography [published erratum appears in J Am Coll Cardiol. 1996;27(3):756]. J Am Coll Cardiol. 1995;26(3):639–647.

    Article  PubMed  CAS  Google Scholar 

  34. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93(5):905–914.

    Article  PubMed  CAS  Google Scholar 

  35. Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–156.

    Article  PubMed  Google Scholar 

  36. Dorbala S, Hachamovitch R, Curillova Z, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846–854.

    Article  PubMed  Google Scholar 

  37. Berman DS, Abidov A, Kang X, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol. 2004;11:414–423.

    Article  PubMed  Google Scholar 

  38. Berman DS, Kang X, Gransar H, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45–53.

    Article  PubMed  Google Scholar 

  39. Slomka PJ, Berman DS, Germano G. Quantification of serial changes in myocardial perfusion. J Nucl Med. 2004;45(12):1978–1980.

    PubMed  Google Scholar 

  40. Garcia EV. Quantitative myocardial perfusion single-photon emission computed tomographic imaging: quo vadis? (Where do we go from here?). J Nucl Cardiol. 1994;1(1):83–93.

    Article  PubMed  CAS  Google Scholar 

  41. Ficaro E, Kritzman J, Corbett J. Development and clinical validation of normal Tc-99m sestamibi database: comparison of 3D-MSPECT to CEqual [abstract]. J Nucl Med. 1999;40(5):125P.

    Google Scholar 

  42. Mahmarian JJ, Cerqueira MD, Iskandrian AE, et al. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the ADVANCE MPI 2 trial. JACC Cardiovasc Imaging. 2009;2(8):959–968.

    Article  PubMed  Google Scholar 

  43. Slomka PJ, Nishina H, Berman DS, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol. 2005;12(1):66–77.

    Article  PubMed  Google Scholar 

  44. Hachamovitch R, Rozanski A, Hayes SW, et al. Predicting therapeutic benefit from myocardial revascularization procedures: are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol. 2006;13:768–778.

    Article  PubMed  Google Scholar 

  45. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–1516.

    Article  PubMed  CAS  Google Scholar 

  46. Shaw LJ, Berman DS, Maron DJ, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–1291.

    Article  PubMed  Google Scholar 

  47. Lima RS, Watson DD, Goode AR, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42:64–70.

    Article  PubMed  Google Scholar 

  48. Berman DS, Kang X, Slomka PJ, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14:521–528.

    Article  PubMed  Google Scholar 

  49. Abdulla A, Maddahi J, Garcia E, et al. Slow regional clearance of myocardial thallium-201 in the absence of perfusion defect: Its contribution to detection of individual coronary artery stenoses and mechanisms for its occurence. Circulation. 1985;71:72–79.

    Article  PubMed  Google Scholar 

  50. Ragosta M, Bishop AH, Lipson LC, et al. Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol. 2007;99(7):896–902.

    Article  PubMed  Google Scholar 

  51. Demer LL, Tintut Y. Vascular calcification: Pathobiology of a multifaceted disease. Circulation. 2008;117:2938–2948.

    Article  PubMed  CAS  Google Scholar 

  52. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92(8):2157–2162.

    Article  PubMed  CAS  Google Scholar 

  53. Greenland P, Bonow RO, Brundage BH, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). Circulation. 2007;115(3):402–426.

    Article  PubMed  Google Scholar 

  54. Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114(16):1761–1791.

    Article  PubMed  Google Scholar 

  55. Yan LL, Liu K, Daviglus ML, et al. Education, 15-year risk factor progression, and coronary artery calcium in young adulthood and early middle age: the Coronary Artery Risk Development in Young Adults study. JAMA. 2006;295(15):1793–1800.

    Article  PubMed  CAS  Google Scholar 

  56. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–1345.

    Article  PubMed  CAS  Google Scholar 

  57. Budoff MJ, Nasir K, McClelland RL, et al. Coronary calcium predicts events better with absolute calcium scores than age-sex-race/ethnicity percentiles: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2009;53(4):345–352.

    Article  PubMed  CAS  Google Scholar 

  58. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic disease events: the St. Francis Heart Study. J Am Coll Cardiol. 2005;46:158–165.

    Article  PubMed  CAS  Google Scholar 

  59. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46(552):1016–1022.

    Article  PubMed  CAS  Google Scholar 

  60. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001;103(21):2535–2538.

    Article  PubMed  CAS  Google Scholar 

  61. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation. 2002;106(16):2051–2054.

    Article  PubMed  Google Scholar 

  62. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–1732.

    Article  PubMed  Google Scholar 

  63. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–2336.

    Article  PubMed  CAS  Google Scholar 

  64. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–2144.

    Article  PubMed  Google Scholar 

  65. Hausleiter J, Meyer T, Hadamitzky M, et al. Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J. 2007;28(24):3034–3041.

    Article  PubMed  Google Scholar 

  66. Di Carli MF, Hachamovitch R. New technology for non-invasive evaluation of coronary artery disease. Circulation. 2007;115:1464–1480.

    Article  PubMed  Google Scholar 

  67. Fearon WF, Tonino PA, De Bruyne B, Siebert U, Pijls NH. Rationale and design of the fractional flow reserve versus angiography for multivessel evaluation (FAME) study. Am Heart J. 2007;154(4):632–636.

    Article  PubMed  Google Scholar 

  68. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–224.

    Article  PubMed  CAS  Google Scholar 

  69. Tamparappoo BK, Gutstein A, Cheng VY, et al. Assessment of the relationship between stenosis severity and distribution of coronary artery stenoses on multislice computed tomographic angiography and myocardial ischemia detected by single photon emission computed tomography. J Nucl cardiol. 2010 in press.

    Article  PubMed  Google Scholar 

  70. Gaemperli O, Valenta I, Schepis T, et al. Coronary 64-slice CT angiography predicts outcome in patients with known or suspected coronary artery disease. Eur Radiol. 2008;18(6):1162–1173.

    Article  PubMed  Google Scholar 

  71. Pundziute G, Schuijf JD, Jukema JW, et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;49(1):62–70.

    Article  PubMed  Google Scholar 

  72. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–1170.

    Article  PubMed  Google Scholar 

  73. van Werkhoven JM, Schuijf JD, Gaemperli O, et al. Incremental prognostic value of multi-slice computed tomography coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J. 2009;30(21):2622–2629.

    Article  PubMed  CAS  Google Scholar 

  74. Berman DS, Hachamovitch R, Shaw LJ, Hayes SW, Germano G. Nuclear cardiology. In: AR FV, O’Rourke RA, Roberts R, King SB, Wellens HJJ, eds. Hurst’s The Heart. 11th ed. New York: McGraw-Hill Companies; 2004:563–597.

    Google Scholar 

  75. van Werkhoven JM, Schuijf JD, Gaemperli O, et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 2009;53(7):623–632.

    Article  PubMed  Google Scholar 

  76. Gambhir SS, Berman DS, Ziffer J, et al. A novel high sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635–643.

    Google Scholar 

  77. Slomka PJ, Cheng VY, Dey D, et al. Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J Nucl Med. 2009;50:1621–1630.

    Article  PubMed  Google Scholar 

  78. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44:923–930.

    Article  PubMed  CAS  Google Scholar 

  79. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  80. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–1305.

    Article  PubMed  Google Scholar 

  81. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults. JAMA. 2001;285(19):2486–2497.

    Google Scholar 

  82. Greenland P, Bonow RO, Brundage BH, et al. Computed tomography: ACC/AHA writing committee to update the 2000 clinical expert consensus document on electron-beam computed tomography for the diagnosis and prognosis for coronary artery disease. J Am Coll Cardiol. 2007;49(3):378–402.

    Article  PubMed  Google Scholar 

  83. Hecht HS, Budoff MJ, Berman DS, Ehrlich J, Rumberger JA. Coronary artery calcium scanning: clinical paradigms for cardiac risk assessment and treatment. Am Heart J. 2006;151(6):1139–1146.

    Article  PubMed  CAS  Google Scholar 

  84. Grover SA, Coupal L, Hu XP. Identifying adults at increased risk of coronary disease. How well do the current cholesterol guidelines work? JAMA. 1995;274(10):801–806.

    Article  PubMed  CAS  Google Scholar 

  85. Nasir K, Michos ED, Blumenthal RS, Raggi P. Detection of high-risk young adults and women by coronary calcium and National Cholesterol Education Program Panel III guidelines. J Am Coll Cardiol. 2005;46(10):1931–1936.

    Article  PubMed  Google Scholar 

  86. Naghavi M, Falk E, Hecht HS, et al.; Force ftST. From vulnerable plaque to vulnerable patient-Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force Report. Am J Cardiol. 2006;98:2–15.

    Article  Google Scholar 

  87. Hendel RC, Berman DS, Di Carli MF, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine: endorsed by the American College of Emergency Physicians. Circulation. 2009;119:e561–e587.

    Article  PubMed  Google Scholar 

  88. He ZX, Hedrick TD, Pratt CM, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101(3):244–251.

    Article  PubMed  CAS  Google Scholar 

  89. Wong ND, Rozanski A, Gransar H, et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care. 2005;28:1445–1450.

    Article  PubMed  Google Scholar 

  90. Rozanski A, Gransar H, Wong ND, et al. Use of coronary calcium scanning for predicting inducible myocardial ischemia: influence of patients’ clinical presentation. J Nucl Cardiol. 2007;14(5):669–679.

    Article  PubMed  Google Scholar 

  91. Hecht HS, Superko HR, Smith LK, McColgan BP. Relation of coronary artery calcium identified by electron beam tomography to serum lipoprotein levels and implications for treatment. Am J Cardiol. 2001;87(4):406–412.

    Article  PubMed  CAS  Google Scholar 

  92. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300(24):1350–1358.

    Article  PubMed  CAS  Google Scholar 

  93. Diamond GA, Staniloff HM, Forrester JS, Pollock BH, Swan HJ. Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol. 1983;1(2 pt 1):444–455.

    Article  PubMed  CAS  Google Scholar 

  94. McCaig LF, Burt CW. National Hospital Ambulatory Medical Care Survey: 2003 Emergency Department Summary: Advance Data from Vital and Health Statistics, No. 358. Hyattsville, MD: National Center for Health Statistics; 2005.

    Google Scholar 

  95. Pope JH, Aufderheide TP, Ruthazer R, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342(16):1163–1170.

    Article  PubMed  CAS  Google Scholar 

  96. Conti A, Gallini C, Costanzo E, et al. Early detection of myocardial ischaemia in the emergency department by rest or exercise (99m)Tc tracer myocardial SPET in patients with chest pain and non-diagnostic ECG. Eur J Nucl Med. 2001;28(12):1806–1810.

    Article  PubMed  CAS  Google Scholar 

  97. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Hauser MF, Gibbons RJ. Prognosis in patients with spontaneous chest pain, a nondiagnostic electrocardiogram, normal cardiac enzymes, and no evidence of severe resting ischemia by quantitative technetium 99m sestamibi tomographic imaging. J Nucl Cardiol. 1998;5(1):64–72.

    Article  PubMed  CAS  Google Scholar 

  98. Udelson JE, Spiegler EJ. Emergency department perfusion imaging for suspected coronary artery disease: the ERASE Chest Pain Trial. Md Med. 2001;suppl:90–94.

    PubMed  CAS  Google Scholar 

  99. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49(8):863–871.

    Article  PubMed  Google Scholar 

  100. Hoffmann U, Bamberg F, Chae CU, et al. Usefulness of coronary CT angiography in the early triage of patients with acute chest pain [abstract]. Circulation. 2008;118:S655.

    Google Scholar 

  101. Schuijf JD, Jukema JW, van der Wall EE, Bax JJ. The current status of multislice computed tomography in the diagnosis and prognosis of coronary artery disease. J Nucl Cardiol. 2007;14(4):604–612.

    Article  PubMed  Google Scholar 

  102. Abidov A, Gallagher M, Chinnaiyan K, Mehta L, Wegner J, Raff G. Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a two-year prospective trial. J Nucl Cardiol. 2009;16(5):701–713.

    Article  PubMed  Google Scholar 

  103. Kalra MK, Brady TJ. Current status and future directions in technical developments of cardiac computed tomography. J Cardiovasc Comput Tomogr. 2008;2:71–80.

    Chapter  Google Scholar 

  104. Hayes SW, Berman DS, Germano G. Stress testing and imaging protocols. In: Germano G, Berman DS, eds. Clinical Gated Cardiac SPECT. 2nd ed. Oxford, UK: Blackwell Publishing; 2006:47–68.

    Chapter  Google Scholar 

  105. Sciagra R, Bisi G, Santoro GM, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997;30(2):384–391.

    Article  PubMed  CAS  Google Scholar 

  106. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation. 1977;55(2):294–302.

    Article  PubMed  CAS  Google Scholar 

  107. Gutman J, Berman DS, Freeman M, et al. Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: relationship to the degree of coronary artery stenosis. Am Heart J. 1983;106(5 pt 1):989–995.

    Article  PubMed  CAS  Google Scholar 

  108. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314(14):884–888.

    Article  PubMed  CAS  Google Scholar 

  109. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation. 1995;92(12):3436–3444.

    Article  PubMed  Google Scholar 

  110. Beanlands RS, Nichol G, Huszti E, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50(20):2002–2012.

    Article  PubMed  Google Scholar 

  111. Wu YW, Tadamura E, Yamamuro M, et al. Comparison of contrast-enhanced MRI with (18)F-FDG PET/201Tl SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease. J Nucl Med. 2007;48(7):1096–1103.

    Article  PubMed  Google Scholar 

  112. Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med. 2007;48(7):1135–1146.

    Article  PubMed  Google Scholar 

  113. Nieman K, Cury RC, Ferencik M, et al. Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am J Cardiol. 2006;98(3):303–308.

    Article  PubMed  Google Scholar 

  114. Dobrucki LW, Sinusas AJ. Cardiovascular molecular imaging. Semin Nucl Med. 2005;35(1):73–81.

    Article  PubMed  Google Scholar 

  115. Agostini D, Verberne HJ, Burchert W, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35(3):535–546.

    Article  PubMed  Google Scholar 

  116. Cohen-Solal A, Esanu Y, Logeart D, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol. 1999;33(3):759–766.

    Article  PubMed  CAS  Google Scholar 

  117. Merlet P, Valette H, Dubois-Rande JL, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med. 1992;33(4):471–477.

    PubMed  CAS  Google Scholar 

  118. Nakata T, Miyamoto K, Doi A, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol. 1998;5(6):579–590.

    Article  PubMed  CAS  Google Scholar 

  119. Wakabayashi T, Nakata T, Hashimoto A, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med. 2001;42(12):1757–1767.

    PubMed  CAS  Google Scholar 

  120. Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol. 2009;16(1):113–121.

    Article  PubMed  Google Scholar 

  121. Jacobson A. The prognostic significance of 123I-mIBG myocardial scintigraphy in heart failure patients: Results from the Prospective Multicenter International ADMIRE-HF Trial (Abstract No. 09-LB-65168-ACC). American College of Cardiology, 2009: Presentation.

    Google Scholar 

  122. Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–1338.

    Article  PubMed  Google Scholar 

  123. Henneman MM, van der Wall EE, Ypenburg C, et al. Nuclear imaging in cardiac resynchronization therapy. J Nucl Med. 2007;48(12):2001–2010.

    Article  PubMed  Google Scholar 

  124. Ypenburg C, Westenberg JJ, Bleeker GB, et al. Noninvasive imaging in cardiac resynchronization therapy – Part 1: selection of patients. Pacing Clin Electrophysiol. 2008;31(11):1475–1499.

    Article  PubMed  Google Scholar 

  125. Van Kriekinge SD, Nishina H, Ohba M, Berman DS, Germano G. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med. 2008;49(11):1790–1797.

    Article  PubMed  Google Scholar 

  126. Chen J, Garcia EV, Folks RD, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol. 2005;12(6):687–695.

    Article  PubMed  Google Scholar 

  127. Chen J, Faber TL, Cooke CD, Garcia EV. Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol. 2008;15(3):383–391.

    Article  PubMed  Google Scholar 

  128. Henneman MM, Chen J, Dibbets-Schneider P, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med. 2007;48(7):1104–1111.

    Article  PubMed  Google Scholar 

  129. Trimble MA, Velazquez EJ, Adams GL, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun. 2008;29(4):374–381.

    Article  PubMed  Google Scholar 

  130. Nichols KJ, Van Tosh A, De Bondt P, Bergmann SR, Palestro CJ, Reichek N. Normal limits of gated blood pool SPECT count-based regional cardiac function parameters. Int J Cardiovasc Imaging. 2008;24(7):717–725.

    Article  PubMed  Google Scholar 

  131. Van Kriekinge SD, De Bondt P, Vanderheyden M, Willems R, Berman DS, Germano G. Gated blood pool SPECT assessment of changes in ventricular function and dyssynchrony in patients responding to cardiac resynchronization therapy. J Nucl Med. 2009;50:170P.

    Google Scholar 

  132. Boogers MM, Van Kriekinge SD, Henneman MM, et al. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med. 2009;50:718–725.

    Article  PubMed  Google Scholar 

  133. Yamamoto A, Takahashi N, Munakata K, et al. Global and regional evaluation of systolic and diastolic left ventricular temporal parameters using a novel program for ECG-gated myocardial perfusion SPECT – validation by comparison with gated equilibrium radionuclide angiography and speckle-tracking radial strain from echocardiography. Ann Nucl Med. 2007;21(2):115–121.

    Article  PubMed  Google Scholar 

  134. Hachamovitch R, Di Carli MF. Nuclear cardiology will remain the “gatekeeper” over computed tomography (CT) angiography. J Nucl Cardiol. 2007;14:634–644.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Berman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Berman, D.S. et al. (2010). Comparative Use of Radionuclide Stress Testing, Coronary Artery Calcium Scanning, and Noninvasive Coronary Angiography for Diagnostic and Prognostic Cardiac Assessment. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics