Skip to main content

Epigenetics and Chronic Diseases: An Overview

  • Chapter
  • First Online:
Epigenetic Aspects of Chronic Diseases

Abstract

According to the World Health Organization, chronic diseases account for an estimated 35 million deaths per year, representing ∼60% of worldwide mortality.163 These disorders, including heart disease, obesity, arthritis, cancer, diabetes, psychiatric illness and dementia, confer a major economic, social, and healthcare burden. In the developed world, for example, the treatment of chronic disease accounts for the major proportion of public healthcare spending. As demographic factors shift and the population ages, the prevalence of chronic disease is likely to increase significantly, especially in the developing world. For instance, the prevalence of adult obesity is on a dramatic upward trajectory, increasing from 12% in 1989 to 27% in 2008 in the USA (http://www.cdc.gov/brfss/). Likewise, as the population ages, the number of cases of Alzheimer’s Disorder is projected to increase from an estimated 24 million in 2001 to >80 million by 2040, with rates in countries such as India and China increasing by more than 300% over this period.41 The possibility of understanding the biology underpinning human chronic illness is therefore one of the most exciting perspectives of contemporary biomedical research, and the focus of considerable research effort across the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamo KB, Tesson F. Gene–environment interaction and the metabolic syndrome.Novartis Found Symp. 2008;293:103-119; discussion 119-127.

    Article  PubMed  CAS  Google Scholar 

  2. Aho K, Koskenvuo M, Tuominen J, Kaprio J. Occurrence of rheumatoid arthritis in a nationwide series of twins.J Rheumatol. 1986;13:899-902.

    PubMed  CAS  Google Scholar 

  3. Akbarian S, Huang HS. Epigenetic regulation in human brain-focus on histone lysine methylation.Biol Psychiatry. 2009;65:198-203.

    Article  PubMed  CAS  Google Scholar 

  4. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.Nat Genet. 1999;23:185-188.

    Article  PubMed  CAS  Google Scholar 

  5. Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation.Nat Rev Genet. 2001;2:59-67.

    Article  PubMed  CAS  Google Scholar 

  6. Balch C, Fang F, Matei DE, Huang TH, Nephew KP. Minireview: epigenetic changes in ovarian cancer.Endocrinology. 2009;150:4003-4011.

    Article  PubMed  CAS  Google Scholar 

  7. Ballestar E, Ballestar E. Epigenetics lessons from twins: prospects for autoimmune disease.Clin Rev Allergy Immunol. 2010;39(1):30-41.

    Article  PubMed  CAS  Google Scholar 

  8. Barker DJ. In utero programming of chronic disease.Clin Sci (Lond). 1998;95:115-128.

    Article  CAS  Google Scholar 

  9. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases.Eur Respir J. 2005;25:552-563.

    Article  PubMed  CAS  Google Scholar 

  10. Barnes PJ, Ito K, Adcock IM. Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase.Lancet. 2004;363:731-733.

    Article  PubMed  CAS  Google Scholar 

  11. Berger SL. The complex language of chromatin regulation during transcription.Nature. 2007;447:407-412.

    Article  PubMed  CAS  Google Scholar 

  12. Bestor TH. The DNA methyltransferases of mammals.Hum Mol Genet. 2000;9:2395-2402.

    Article  PubMed  CAS  Google Scholar 

  13. Bird AP. CpG-rich islands and the function of DNA methylation.Nature. 1986;321:209-213.

    Article  PubMed  CAS  Google Scholar 

  14. Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering.Jama. 2008;299:2877-2883.

    Article  PubMed  CAS  Google Scholar 

  15. Blewitt ME, Vickaryous NK, Hemley SJ, et al. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse.Proc Natl Acad Sci U S A. 2005;102:7629-7634.

    Article  PubMed  CAS  Google Scholar 

  16. Byrne M, Agerbo E, Ewald H, Eaton WW, Mortensen PB. Parental age and risk of schizophrenia: a case-control study.Arch Gen Psychiatry. 2003;60:673-678.

    Article  PubMed  Google Scholar 

  17. Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.Science. 2003;301:386-389.

    Article  PubMed  CAS  Google Scholar 

  18. Castle DJ, Wessely S, Murray RM. Sex and schizophrenia: effects of diagnostic stringency, and associations with and premorbid variables.Br J Psychiatry. 1993;162:658-664.

    Article  PubMed  CAS  Google Scholar 

  19. Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells.J Biol Chem. 2003;278:23617-23623.

    Article  PubMed  CAS  Google Scholar 

  20. Chang HS, Anway MD, Rekow SS, Skinner MK. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination.Endocrinology. 2006;147:5524-5541.

    Article  PubMed  CAS  Google Scholar 

  21. Chen J, Odenike O, Rowley JD. Leukaemogenesis: more than mutant genes.Nat Rev Cancer. 2010;10:23-36.

    Article  PubMed  CAS  Google Scholar 

  22. Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context.PLoS Genet. 2009;5:e1000602.

    Article  PubMed  CAS  Google Scholar 

  23. Cibelli JB, Campbell KH, Seidel GE, West MD, Lanza RP. The health profile of cloned animals.Nat Biotechnol. 2002;20:13-14.

    Article  PubMed  CAS  Google Scholar 

  24. Connor CM, Akbarian S. DNA methylation changes in schizophrenia and bipolar disorder.Epigenetics. 2008;3:55-58.

    Article  PubMed  Google Scholar 

  25. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring.J Nutr. 2002;132:2393S-2400S.

    PubMed  CAS  Google Scholar 

  26. Currenti SA. Understanding and determining the etiology of autism.Cell Mol Neurobiol. 2010;30:161-171.

    Article  PubMed  Google Scholar 

  27. Davies W, Isles AR, Wilkinson LS. Imprinted gene expression in the brain.Neurosci Biobehav Rev. 2005;29:421-430.

    Article  PubMed  CAS  Google Scholar 

  28. De Marzo AM, Platz EA, Sutcliffe S, et al. Inflammation in prostate carcinogenesis.Nat Rev Cancer. 2007;7:256-269.

    Article  PubMed  CAS  Google Scholar 

  29. Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus.Arthritis Rheum. 1992;35:311-318.

    Article  PubMed  CAS  Google Scholar 

  30. Dolinoy DC, Jirtle RL. Environmental epigenomics in human health and disease.Environ Mol Mutagen. 2008;49:4-8.

    Article  PubMed  CAS  Google Scholar 

  31. Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease.Reprod Toxicol. 2007;23:297-307.

    Article  PubMed  CAS  Google Scholar 

  32. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome.Environ Health Perspect. 2006;114:567-572.

    Article  PubMed  CAS  Google Scholar 

  33. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins.Am Rev Respir Dis. 1990;142:1351-1358.

    PubMed  CAS  Google Scholar 

  34. Ebers GC, Sadovnick AD. The role of genetic factors in multiple sclerosis susceptibility.J Neuroimmunol. 1994;54:1-17.

    Article  PubMed  CAS  Google Scholar 

  35. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy.Nature. 2004;429:457-463.

    Article  PubMed  CAS  Google Scholar 

  36. Ekstrom TJ, Stenvinkel P. The epigenetic conductor: a genomic orchestrator in chronic kidney disease complications?J Nephrol. 2009;22:442-449.

    PubMed  Google Scholar 

  37. Faire UD, Pedersen N. Studies of twins and adoptees in coronary heart disease. In: Goldbourt U, Faire UD, Berg K, eds.Genetic Factors in Coronary Heart Disease. New York: Springer; 1994:55-68.

    Chapter  Google Scholar 

  38. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease.Nature. 2007;447:433-440.

    Article  PubMed  CAS  Google Scholar 

  39. Ferguson-Smith A, Lin SP, Tsai CE, Youngson N, Tevendale M. Genomic imprinting – insights from studies in mice.Semin Cell Dev Biol. 2003;14:43-49.

    Article  PubMed  CAS  Google Scholar 

  40. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study.Lancet. 2005;366:2112-2117.

    Article  PubMed  Google Scholar 

  41. Flanagan JM, Popendikyte V, Pozdniakovaite N, et al. Intra- and interindividual epigenetic variation in human germ cells.Am J Hum Genet. 2006;79:67-84.

    Article  PubMed  CAS  Google Scholar 

  42. Flint J. Implications of genomic imprinting for psychiatric genetics.Psychol Med. 1992;22:5-10.

    Article  PubMed  CAS  Google Scholar 

  43. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins.Proc Natl Acad Sci U S A. 2005;102:10604-10609.

    Article  PubMed  CAS  Google Scholar 

  44. Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Langstrom N, Hultman CM. Advancing paternal age and bipolar disorder.Arch Gen Psychiatry. 2008;65:1034-1040.

    Article  PubMed  Google Scholar 

  45. Fu M, Rao M, Wang C, et al. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth.Mol Cell Biol. 2003;23:8563-8575.

    Article  PubMed  CAS  Google Scholar 

  46. Fu M, Wang C, Zhang X, Pestell RG. Acetylation of nuclear receptors in cellular growth and apoptosis.Biochem Pharmacol. 2004;68:1199-1208.

    Article  PubMed  CAS  Google Scholar 

  47. Gartner K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals?Lab Anim. 1990;24:71-77.

    Article  PubMed  CAS  Google Scholar 

  48. Gershon ES, Badner JA, Detera-Wadleigh SD, Ferraro TN, Berrettini WH. Maternal inheritance and chromosome 18 allele sharing in unilineal bipolar illness pedigrees.Am J Med Genet. 1996;67:202-207.

    Article  PubMed  CAS  Google Scholar 

  49. Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective.Pediatr Res. 2004;56:311-317.

    Article  PubMed  Google Scholar 

  50. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective.Am J Hum Biol. 2007;19:1-19.

    Article  PubMed  Google Scholar 

  51. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases.Nat Rev Endocrinol. 2009;5:401-408.

    Article  PubMed  CAS  Google Scholar 

  52. Grant PA, Berger SL. Histone acetyltransferase complexes.Semin Cell Dev Biol. 1999;10:169-177.

    Article  PubMed  CAS  Google Scholar 

  53. Grewal SI, Jia S. Heterochromatin revisited.Nat Rev Genet. 2007;8:35-46.

    Article  PubMed  CAS  Google Scholar 

  54. Guo SW. Epigenetics of endometriosis.Mol Hum Reprod. 2009;15:587-607.

    Article  PubMed  CAS  Google Scholar 

  55. Haque FN, Gottesman II, Wong AH. Not really identical: epigenetic differences in monozygotic twins and implications for twin studies in psychiatry.Am J Med Genet C Semin Med Genet. 2009;151C:136-141.

    Article  PubMed  CAS  Google Scholar 

  56. Hatchwell E, Greally JM. The potential role of epigenomic dysregulation in complex human disease.Trends Genet. 2007;23:588-595.

    Article  PubMed  CAS  Google Scholar 

  57. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans.Proc Natl Acad Sci U S A. 2008;105:17046-17049.

    Article  PubMed  CAS  Google Scholar 

  58. Henikoff S, Matzke MA. Exploring and explaining epigenetic effects.Trends Genet. 1997;13:293-295.

    Article  PubMed  CAS  Google Scholar 

  59. Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases.J Autoimmun. 2009;33:3-11.

    Article  PubMed  CAS  Google Scholar 

  60. Imagawa K, de Andes MC, Hashimoto K, Itoi E, Oreffo R, Roach H. Reduced Expression of Collagen Type IX in Human Osteoarthritic Chondrocytrs is Associated with Epigenetic Silencing by DNA Hypermethylation. Osteoarthritis and Cartilage. 2009;18(Suppl. 2):S36-S36.

    Google Scholar 

  61. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies.Blood. 2004;103:1635-1640.

    Article  PubMed  CAS  Google Scholar 

  62. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.Nat Genet. 2003;33(Suppl):245-254.

    Article  PubMed  CAS  Google Scholar 

  63. Javierre BM, Fernandez AF, Richter J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus.Genome Res. 2010;20:170-179.

    Article  PubMed  CAS  Google Scholar 

  64. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility.Nat Rev Genet. 2007;8:253-262.

    Article  PubMed  CAS  Google Scholar 

  65. Jones PA, Baylin SB. The epigenomics of cancer.Cell. 2007;128:683-692.

    Article  PubMed  CAS  Google Scholar 

  66. Kalsi G, Prescott CA, Kendler KS, Riley BP. Unraveling the molecular mechanisms of alcohol dependence.Trends Genet. 2009;25:49-55.

    Article  PubMed  CAS  Google Scholar 

  67. Kaminsky Z, Wang SC, Petronis A. Complex disease, gender and epigenetics.Ann Med. 2006;38:530-544.

    Article  PubMed  CAS  Google Scholar 

  68. Kaminsky ZA, Tang T, Wang SC, et al. DNA methylation profiles in monozygotic and dizygotic twins.Nat Genet. 2009;41:240-245.

    Article  PubMed  CAS  Google Scholar 

  69. Kanner L. Autistic disturbances of affective contact.Acta Paedopsychiatr. 1968;35:100-136.

    PubMed  CAS  Google Scholar 

  70. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland.Diabetologia. 1992;35:1060-1067.

    Article  PubMed  CAS  Google Scholar 

  71. Karouzakis E, Gay RE, Gay S, Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts.Nat Rev Rheumatol. 2009;5:266-272.

    Article  PubMed  CAS  Google Scholar 

  72. Karrasch S, Holz O, Jorres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema.Respir Med. 2008;102:1215-1230.

    Article  PubMed  Google Scholar 

  73. Kawakami K, Ruszkiewicz A, Bennett G, et al. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer.Br J Cancer. 2006;94:593-598.

    Article  PubMed  CAS  Google Scholar 

  74. Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription.Biochim Biophys Acta. 2004;1677:30-45.

    Article  PubMed  CAS  Google Scholar 

  75. Klar AJ. Propagating epigenetic states through meiosis: where Mendel’s gene is more than a DNA moiety.Trends Genet. 1998;14:299-301.

    Article  PubMed  CAS  Google Scholar 

  76. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators.Trends Biochem Sci. 2006;31:89-97.

    Article  PubMed  CAS  Google Scholar 

  77. Kolevzon A, Gross R, Reichenberg A. Prenatal and perinatal risk factors for autism: a review and integration of findings.Arch Pediatr Adolesc Med. 2007;161:326-333.

    Article  PubMed  Google Scholar 

  78. Kong A, Steinthorsdottir V, Masson G, et al. Parental origin of sequence variants associated with complex diseases.Nature. 2009;462:868-874.

    Article  PubMed  CAS  Google Scholar 

  79. Krishnan V, Nestler EJ. The molecular neurobiology of depression.Nature. 2008;455:894-902.

    Article  PubMed  CAS  Google Scholar 

  80. Lai JC, Cheng YW, Chiou HL, Wu MF, Chen CY, Lee H. Gender difference in estrogen receptor alpha promoter hypermethylation and its prognostic value in non-small cell lung cancer.Int J Cancer. 2005;117:974-980.

    Article  PubMed  CAS  Google Scholar 

  81. Lin E, Hsu SY. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome.Pharmacogenomics. 2009;10:35-42.

    Article  PubMed  CAS  Google Scholar 

  82. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution.Nature. 1997;389:251-260.

    Article  PubMed  CAS  Google Scholar 

  83. Macfarlane AJ, Strom A, Scott FW. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes.Mamm Genome. 2009;20(9–10):624-632.

    Article  PubMed  CAS  Google Scholar 

  84. Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, et al. Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression.J Autoimmun. 2010;35(1):15-22.

    Article  PubMed  CAS  Google Scholar 

  85. Maciejewska HR, Jungel A, Gay RE, Gay S. Innate immunity, epigenetics and autoimmunity in rheumatoid arthritis.Mol Immunol. 2009;47:12-18.

    Article  CAS  Google Scholar 

  86. Malaspina D, Harlap S, Fennig S, et al. Advancing paternal age and the risk of schizophrenia.Arch Gen Psychiatry. 2001;58:361-367.

    Article  PubMed  CAS  Google Scholar 

  87. Mani ST, Thakur MK. In the cerebral cortex of female and male mice, amyloid precursor protein (APP) promoter methylation is higher in females and differentially regulated by sex steroids.Brain Res. 2006;1067:43-47.

    Article  PubMed  CAS  Google Scholar 

  88. Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease.PloS One. 2009;4:e6617.

    Article  PubMed  CAS  Google Scholar 

  89. McGowan PO, Kato T. Epigenetics in mood disorders.Environ Health Prev Med. 2008;13:16-24.

    Article  PubMed  CAS  Google Scholar 

  90. McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse.Nat Neurosci. 2009;12:342-348.

    Article  PubMed  CAS  Google Scholar 

  91. Meijlink FC, Philipsen JN, Gruber M, Ab G. Methylation of the chicken vitellogenin gene: influence of estradiol administration.Nucleic Acids Res. 1983;11:1361-1373.

    Article  PubMed  CAS  Google Scholar 

  92. Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia.Cancer Res. 1999;59:3730-3740.

    PubMed  CAS  Google Scholar 

  93. Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I. Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene.Am J Med Genet B Neuropsychiatr Genet. 2006;141B:421-425.

    Article  PubMed  CAS  Google Scholar 

  94. Mill J, Petronis A. Molecular studies of major depressive disorder: the epigenetic perspective.Mol Psychiatry. 2007;12(9):799-814.

    Article  PubMed  CAS  Google Scholar 

  95. Mill J, Petronis A. The relevance of epigenetics to major psychosis. In: Ferguson-Smith A, Greally J, Martienssen R, eds.Epigenomics. New York: Springer; 2009.

    Google Scholar 

  96. Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA methylation changes associated with major psychosis.Am J Hum Genet. 2008;82(3):696-711.

    Article  PubMed  CAS  Google Scholar 

  97. Miller RL, Ho SM. Environmental epigenetics and asthma: current concepts and call for studies.Am J Respir Crit Care Med. 2008;177:567-573.

    Article  PubMed  CAS  Google Scholar 

  98. Nagarajan RP, Patzel KA, Martin M, et al. MECP2 promoter methylation and X chromosome inactivation in autism.Autism Res. 2008;1:169-178.

    Article  PubMed  Google Scholar 

  99. Ober C, Thompson EE. Rethinking genetic models of asthma: the role of environmental modifiers.Curr Opin Immunol. 2005;17:670-678.

    Article  PubMed  CAS  Google Scholar 

  100. Ooi SL, Henikoff S. Germline histone dynamics and epigenetics.Curr Opin Cell Biol. 2007;19:257-265.

    Article  PubMed  CAS  Google Scholar 

  101. Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study.Lancet Neurol. 2006;5:932-936.

    Article  PubMed  Google Scholar 

  102. Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development, and disease.J Pathol. 2001;195:97-110.

    Article  PubMed  CAS  Google Scholar 

  103. Pembrey ME, Bygren LO, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans.Eur J Hum Genet. 2006;14:159-166.

    Article  PubMed  Google Scholar 

  104. Perrin MC, Brown AS, Malaspina D. Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia.Schizophr Bull. 2007;33:1270-1273.

    Article  PubMed  Google Scholar 

  105. Petel-Galil Y, Benteer B, Galil YP, et al. Comprehensive diagnosis of Rett’s syndrome relying on genetic, epigenetic and expression evidence of deficiency of the methyl-CpG-binding protein 2 gene: study of a cohort of Israeli patients.J Med Genet. 2006;43:e56.

    Article  PubMed  CAS  Google Scholar 

  106. Petronis A. Human morbid genetics revisited: relevance of epigenetics.Trends Genet. 2001;17:142-146.

    Article  PubMed  CAS  Google Scholar 

  107. Petronis A. Epigenetics and bipolar disorder: new opportunities and challenges.Am J Med Genet C Semin Med Genet. 2003;123:65-75.

    Article  Google Scholar 

  108. Petronis A. The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis.Biol Psychiatry. 2004;55:965-970.

    Article  PubMed  CAS  Google Scholar 

  109. Pidsley R, Dempster EL, Mill J. Brain weight in males is correlated with DNA methylation at IGF2.Mol Psychiatry. 2010;15(9):880-881.

    Article  PubMed  CAS  Google Scholar 

  110. Plomin R, Owen MJ, McGuffin P. The genetic basis of complex human behaviors.Science. 1994;264:1733-1739.

    Article  PubMed  CAS  Google Scholar 

  111. Polesskaya OO, Aston C, Sokolov BP. Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1.J Neurosci Res. 2006;83:362-373.

    Article  PubMed  CAS  Google Scholar 

  112. Preis JI, Downes M, Oates NA, Rasko JE, Whitelaw E. Sensitive flow cytometric analysis reveals a novel type of parent-of-origin effect in the mouse genome.Curr Biol. 2003;13:955-959.

    Article  PubMed  CAS  Google Scholar 

  113. Quddus J, Johnson KJ, Gavalchin J, et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice.J Clin Invest. 1993;92:38-53.

    Article  PubMed  CAS  Google Scholar 

  114. Rakyan V, Whitelaw E. Transgenerational epigenetic inheritance.Curr Biol. 2003;13:R6.

    Article  PubMed  CAS  Google Scholar 

  115. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals.Trends Genet. 2002;18:348-351.

    Article  PubMed  CAS  Google Scholar 

  116. Reynolds E. Vitamin B12, folic acid, and the nervous system.Lancet Neurol. 2006;5:949-960.

    Article  PubMed  CAS  Google Scholar 

  117. Richards EJ. Inherited epigenetic variation – revisiting soft inheritance.Nat Rev Genet. 2006;7:395-401.

    Article  PubMed  CAS  Google Scholar 

  118. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis.Arthritis Rheum. 1990;33:1665-1673.

    Article  PubMed  CAS  Google Scholar 

  119. Riggs AD, Xiong Z, Wang L, LeBon JM. Methylation dynamics, epigenetic fidelity and X chromosome structure.Novartis Found Symp. 1998;214:214-225; discussion 225-232.

    PubMed  CAS  Google Scholar 

  120. Roach HI, Aigner T. DNA methylation in osteoarthritic chondrocytes: a new molecular target.Osteoarthr Cartil. 2007;15:128-137.

    Article  PubMed  CAS  Google Scholar 

  121. Roach HI, Yamada N, Cheung KS, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions.Arthritis Rheum. 2005;52:3110-3124.

    Article  PubMed  CAS  Google Scholar 

  122. Robertson KD, Wolffe AP. DNA methylation in health and disease.Nat Rev Genet. 2000;1(1):11-19.

    Google Scholar 

  123. Robinson RL, Carpenter D, Halsall PJ, et al. Epigenetic allele silencing and variable penetrance of malignant hyperthermia susceptibility.Br J Anaesth. 2009;103:220-225.

    Article  PubMed  CAS  Google Scholar 

  124. Rollins RA, Haghighi F, Edwards JR, et al. Large-scale structure of genomic methylation patterns.Genome Res. 2006;16:157-163.

    Article  PubMed  CAS  Google Scholar 

  125. Rosa A, Picchioni MM, Kalidindi S, et al. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins.Am J Med Genet B Neuropsychiatr Genet. 2008;147B:459-462.

    Article  PubMed  Google Scholar 

  126. Saha RN, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis.Cell Death Differ. 2006;13:539-550.

    Article  PubMed  CAS  Google Scholar 

  127. Saluz HP, Jiricny J, Jost JP. Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis.Proc Natl Acad Sci U S A. 1986;83:7167-7171.

    Article  PubMed  CAS  Google Scholar 

  128. Sandovici I, Kassovska-Bratinova S, Loredo-Osti JC, et al. Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements.Hum Mol Genet. 2005;14:2135-2143.

    Article  PubMed  CAS  Google Scholar 

  129. Sarter B, Long TI, Tsong WH, Koh WP, Yu MC, Laird PW. Sex differential in methylation patterns of selected genes in Singapore.Chinese Hum Genet. 2005;117:402-403.

    Article  CAS  Google Scholar 

  130. Scarpa S, Cavallaro RA, D’Anselmi F, Fuso A. Gene silencing through methylation: an epigenetic intervention on Alzheimer disease.J Alzheimers Dis. 2006;9:407-414.

    PubMed  CAS  Google Scholar 

  131. Schalkwyk LC, Meaburn EL, Smith R, et al. Allelic skewing of DNA methylation is widespread across the genome.Am J Hum Genet. 2010;86:196-212.

    Article  PubMed  CAS  Google Scholar 

  132. Schulz WA, Hoffmann MJ. Epigenetic mechanisms in the biology of prostate cancer.Semin Cancer Biol. 2009;19:172-180.

    Article  PubMed  CAS  Google Scholar 

  133. Schwartz DA. Gene-environment interactions and airway disease in children.Pediatrics. 2009;123(Suppl 3):S151-S159.

    Article  PubMed  Google Scholar 

  134. Shen Y, Chow J, Wang Z, Fan G. Abnormal CpG island methylation occurs during in vitro differentiation of human embryonic stem cells.Hum Mol Genet. 2006;15:2623-2635.

    Article  PubMed  CAS  Google Scholar 

  135. Shimabukuro M, Jinno Y, Fuke C, Okazaki Y. Haloperidol treatment induces tissue- and sex-specific changes in DNA methylation: a control study using rats.Behav Brain Funct. 2006;2:37.

    Article  PubMed  CAS  Google Scholar 

  136. Shimabukuro M, Sasaki T, Imamura A, et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia.J Psychiatr Res. 2007;41(12):1042-1046.

    Article  PubMed  Google Scholar 

  137. Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.PloS One. 2007;2:e895.

    Article  PubMed  CAS  Google Scholar 

  138. Sipos A, Rasmussen F, Harrison G, et al. Paternal age and schizophrenia: a population based cohort study.BMJ. 2004;329:1070.

    Article  PubMed  Google Scholar 

  139. Smith RG, Kember RL, Mill J, et al. Advancing paternal age is associated with deficits in social and exploratory behaviors in the offspring: a mouse model.PloS One. 2009;4:e8456.

    Article  PubMed  CAS  Google Scholar 

  140. Spencer VA, Davie JR. Role of covalent modifications of histones in regulating gene expression.Gene. 1999;240:1-12.

    Article  PubMed  CAS  Google Scholar 

  141. St Clair D, Xu M, Wang P, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961.JAMA. 2005;294:557-562.

    Article  PubMed  CAS  Google Scholar 

  142. Stenvinkel P, Karimi M, Johansson S, et al. Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease?J Intern Med. 2007;261:488-499.

    Article  PubMed  CAS  Google Scholar 

  143. Surani MA, Sasaki H, Ferguson-Smith AC, et al. The inheritance of germline-specific epigenetic modifications during development.Philos Trans R Soc Lond. 1993;339:165-172.

    Article  CAS  Google Scholar 

  144. Susser E, Neugebauer R, Hoek HW, et al. Schizophrenia after prenatal famine. Further evidence.Arch Gen Psychiatry. 1996;53:25-31.

    Article  PubMed  CAS  Google Scholar 

  145. Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945.Arch Gen Psychiatry. 1992;49:983-988.

    Article  PubMed  CAS  Google Scholar 

  146. Szyf M, Weaver I, Meaney M. Maternal care, the epigenome and phenotypic differences in behavior.Reprod Toxicol. 2007;24(1):9-19.

    Google Scholar 

  147. Szulakowski P, Crowther AJ, Jimenez LA, et al. The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease.Am J Respir Crit Care Med. 2006;174:41-50.

    Article  PubMed  CAS  Google Scholar 

  148. Takami N, Osawa K, Miura Y, et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells.Arthritis Rheum. 2006;54:779-787.

    Article  PubMed  CAS  Google Scholar 

  149. Tamashiro KL, Wakayama T, Yamazaki Y, et al. Phenotype of cloned mice: development, behavior, and physiology.Exp Biol Med (Maywood). 2003;228:1193-1200.

    CAS  Google Scholar 

  150. Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention.Exp Neurol. 2007;208:1-25.

    Article  PubMed  CAS  Google Scholar 

  151. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study.BMJ. 1996;312:95-96.

    Article  PubMed  CAS  Google Scholar 

  152. Tiemann-Boege I, Navidi W, Grewal R, et al. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect.Proc Natl Acad Sci U S A. 2002;99:14952-14957.

    Article  PubMed  CAS  Google Scholar 

  153. Trenkmann M, Brock M, Ospelt C, Gay S. Epigenetics in rheumatoid arthritis.Clin Rev Allergy Immunol. 2010;39(1):10-19.

    Article  PubMed  CAS  Google Scholar 

  154. Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K. Fidelity of the methylation pattern and its variation in the genome.Genome Res. 2003;13:868-874.

    Article  PubMed  CAS  Google Scholar 

  155. Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease.PloS One. 2008;3:e2698.

    Article  PubMed  CAS  Google Scholar 

  156. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis.Annu Rev Nutr. 2007;27:363-388.

    Article  PubMed  CAS  Google Scholar 

  157. Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior.Nat Neurosci. 2004;7:847-854.

    Article  PubMed  CAS  Google Scholar 

  158. Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood.Proc Natl Acad Sci U S A. 2006;103:3480-3485.

    Article  PubMed  CAS  Google Scholar 

  159. Widschwendter M, Jiang G, Woods C, et al. DNA hypomethylation and ovarian cancer biology.Cancer Res. 2004;64:4472-4480.

    Article  PubMed  CAS  Google Scholar 

  160. Wilks A, Seldran M, Jost JP. An estrogen-dependent demethylation at the 5′ end of the chicken vitellogenin gene is independent of DNA synthesis.Nucleic Acids Res. 1984;12:1163-1177.

    Article  PubMed  CAS  Google Scholar 

  161. Wilks AF, Cozens PJ, Mattaj IW, Jost JP. Estrogen induces a demethylation at the 5′ end region of the chicken vitellogenin gene.Proc Natl Acad Sci U S A. 1982;79:4252-4255.

    Article  PubMed  CAS  Google Scholar 

  162. Wong AH, Gottesman II, Petronis A. Phenotypic differences in genetically identical organisms: the epigenetic perspective.Hum Mol Genet. 2005;14(Spec No 1):R11-R18.

    Article  PubMed  CAS  Google Scholar 

  163. World Health O (2005) Preventing chronic diseases: a vital investment.

    Google Scholar 

  164. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis.Am J Obstet Gynecol. 2005;193:371-380.

    Article  PubMed  CAS  Google Scholar 

  165. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis.Fertil Steril. 2007;87:24-32.

    Article  PubMed  CAS  Google Scholar 

  166. Xu L, Glass CK, Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function.Curr Opin Genet Dev. 1999;9:140-147.

    Article  PubMed  CAS  Google Scholar 

  167. Yauk C, Polyzos A, Rowan-Carroll A, et al. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location.Proc Natl Acad Sci U S A. 2008;105:605-610.

    Article  PubMed  CAS  Google Scholar 

  168. Yu J, Zhang H, Gu J, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma.BMC Cancer. 2004;4:65.

    Article  PubMed  CAS  Google Scholar 

  169. Zammit S, Allebeck P, Dalman C, et al. Paternal age and risk for schizophrenia.Br J Psychiatry. 2003;183:405-408.

    Article  PubMed  Google Scholar 

  170. Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease.Free Radic Biol Med. 2009;46:1241-1249.

    Article  PubMed  CAS  Google Scholar 

  171. Zhou H, Brockington M, Jungbluth H, et al. Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies.Am J Hum Genet. 2006;79:859-868.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Smith, R., Mill, J. (2011). Epigenetics and Chronic Diseases: An Overview. In: Roach, H., Bronner, F., Oreffo, R. (eds) Epigenetic Aspects of Chronic Diseases. Springer, London. https://doi.org/10.1007/978-1-84882-644-1_1

Download citation

Publish with us

Policies and ethics