Skip to main content

Tissue-Engineered Vascular Substitutes: New Models Toward Successful Small Diameter Grafts

  • Chapter
  • First Online:
  • 936 Accesses

Abstract

Vascular replacement surgery with synthetic large diameter grafts has now been a successful clinical reality for decades. However, attempts to use similar materials and approaches for small diameter grafts such as those needed for coronary and infrapopliteal bypass surgeries have, so far, yielded very unsatisfactory clinical outcomes. This challenge has led to many years of research in small diameter vascular substitutes (VS), focusing at first on endothelialization of grafts made of synthetic materials such as expanded poly(tetrafluoroethylene) (ePTFE) and Dacron® and later on tissue-engineered vascular substitutes (TEVS) involving the use of living human cells and increasingly complex combinations of biomaterials, dynamic culture conditions, and other emerging technologies. While the ultimate clinical goal of a successful small diameter vascular graft is still eluding us, TEVS are getting closer to mimic the physiology of native human blood vessels and are emerging as new models for normal and pathological vascular research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

EC:

Endothelial cells

EPC:

Endothelial progenitor cells

eNOS:

Endothelial nitric oxide synthase

ePTFE:

Expanded poly(tetrafluoroethylene)

HIF-1α:

Hypoxia inducible factor-1 alpha

htPA:

Human tissue-type plasminogen activator

NO:

Nitric oxide

PU:

Polyurethane

PVR:

Peripheral vascular resistance

SMC:

Smooth muscle cells

TEVS:

Tissue-engineered vascular substitutes

VS:

Vascular substitutes

References

  1. Zilla P, Bezuidenhout D, Human P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials. 2007;28(34):5009-5027.

    Article  CAS  PubMed  Google Scholar 

  2. Kapadia MR, Popowich DA, Kibbe MR. Modified prosthetic vascular conduits. Circulation. 2008;117(14):1873-1882.

    Article  PubMed  Google Scholar 

  3. Kader KN, Akella R, Ziats NP, et al. eNOS-overexpressing endothelial cells inhibit platelet aggregation and smooth muscle cell proliferation in vitro. Tissue Eng. 2000;6(3):241-251.

    Article  CAS  PubMed  Google Scholar 

  4. Sugawara Y, Sakata Y, Minowada S, et al. Adenovirus-mediated transfer of tissue-type plasminogen activator gene to human endothelial cells. Surgery. 1997;122(1):91-100.

    Article  CAS  PubMed  Google Scholar 

  5. Kong D, Melo LG, Mangi AA, et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation. 2004;109(14):1769-1775.

    Article  CAS  PubMed  Google Scholar 

  6. Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng. 2006;12(11):3247-3256.

    Article  CAS  PubMed  Google Scholar 

  7. Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E. Vascular tissue engineering with magnetic nanoparticles: seeing deeper. J Tissue Eng Regen Med. 2007;1(4):318-321.

    Article  CAS  PubMed  Google Scholar 

  8. Perea H, Aigner J, Hopfner U, Wintermantel E. Direct magnetic tubular cell seeding: a novel approach for vascular tissue engineering. Cells Tissues Organs. 2006;183(3):156-165.

    Article  CAS  PubMed  Google Scholar 

  9. Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123-1127.

    Article  CAS  PubMed  Google Scholar 

  10. Gao D, Kumar G, Co C, Ho CC. Formation of capillary tube-like structures on micropatterned biomaterials. Adv Exp Med Biol. 2008;614:199-205.

    Article  CAS  PubMed  Google Scholar 

  11. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999;20(23-24):2363-2376.

    Article  CAS  PubMed  Google Scholar 

  12. Xia N, Thodeti CK, Hunt TP, et al. Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. Faseb J. 2008;22(6):1649-1659.

    Article  CAS  PubMed  Google Scholar 

  13. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397-400.

    Article  CAS  PubMed  Google Scholar 

  14. Chiu JJ, Chen LJ, Chen CN, Lee PL, Lee CI. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech. 2004;37(4):531-539.

    Article  PubMed  Google Scholar 

  15. Fernandez P, Bourget C, Bareille R, Daculsi R, Bordenave L. Gene response in endothelial cells cultured on engineered surfaces is regulated by shear stress. Tissue Eng. 2007;13(7):1607-1614.

    Article  CAS  PubMed  Google Scholar 

  16. Ozawa N, Shichiri M, Iwashina M, Fukai N, Yoshimoto T, Hirata Y. Laminar shear stress up-regulates inducible nitric oxide synthase in the endothelium. Hypertens Res. 2004;27(2):93-99.

    Article  CAS  PubMed  Google Scholar 

  17. Reinhardt PH, Kubes P. Differential leukocyte recruitment from whole blood via endothelial adhesion molecules under shear conditions. Blood. 1998;92(12):4691-4699.

    CAS  PubMed  Google Scholar 

  18. Sharefkin JB, Diamond SL, Eskin SG, McIntire LV, Dieffenbach CW. Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J Vasc Surg. 1991;14(1):1-9.

    Article  CAS  PubMed  Google Scholar 

  19. Sakamoto N, Ohashi T, Sato M. Effect of fluid shear stress on migration of vascular smooth muscle cells in co-cultured model. Ann Biomed Eng. 2006;34(3):408-415.

    Article  PubMed  Google Scholar 

  20. Baitella-Eberle G, Groscurth P, Zilla P, et al. Long-term results of tissue development and cell differentiation on Dacron prostheses seeded with microvascular cells in dogs. J Vasc Surg. 1993;18(6):1019-1028.

    Article  CAS  PubMed  Google Scholar 

  21. Bordenave L, Fernandez P, Remy-Zolghadri M, Villars S, Daculsi R, Midy D. In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realization. Clin Hemorheol Microcirc. 2005;33(3):227-234.

    CAS  PubMed  Google Scholar 

  22. Meinhart J, Deutsch M, Zilla P. Eight years of clinical endothelial cell transplantation. Closing the gap between prosthetic grafts and vein grafts. ASAIO J. 1997;43(5):M515-M521.

    Article  CAS  PubMed  Google Scholar 

  23. Pasic M, Muller-Glauser W, von Segesser L, Odermatt B, Lachat M, Turina M. Endothelial cell seeding improves patency of synthetic vascular grafts: manual versus automatized method. Eur J Cardiothorac Surg. 1996;10(5):372-379.

    Article  CAS  PubMed  Google Scholar 

  24. Stanley JC, Burkel WE, Ford JW, et al. Enhanced patency of small-diameter, externally supported Dacron iliofemoral grafts seeded with endothelial cells. Surgery. 1982;92(6):994-1005.

    CAS  PubMed  Google Scholar 

  25. Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs. 2002;26(4):307-320.

    Article  PubMed  Google Scholar 

  26. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med. 2001;7(9):1035-1040.

    Article  CAS  PubMed  Google Scholar 

  27. Shirota T, He H, Yasui H, Matsuda T. Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombotic potentials in vitro and fabrication processing. Tissue Eng. 2003;9(1):127-136.

    Article  CAS  PubMed  Google Scholar 

  28. Mirza A, Hyvelin JM, Rochefort GY, et al. Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. J Vasc Surg. 2008;47(6):1313-1321.

    Article  PubMed  Google Scholar 

  29. Zhang L, Zhou J, Lu Q, Wei Y, Hu S. A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnol Bioeng. 2008;99(4):1007-1015.

    Article  CAS  PubMed  Google Scholar 

  30. Rotmans JI, Heyligers JM, Stroes ES, Pasterkamp G. Endothelial progenitor cell-seeded grafts: rash and risky. Can J Cardiol. 2006;22(11):929-932.

    PubMed  Google Scholar 

  31. Wallace CS, Strike SA, Truskey GA. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in co-culture. Am J Physiol Heart Circ Physiol. 2007;293(3):H1978-H1986.

    Article  CAS  PubMed  Google Scholar 

  32. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science. 1999;284(5413):489-493.

    Article  CAS  PubMed  Google Scholar 

  33. Auger FA, D’Orleans-Juste P, Germain L. Adventitia contribution to vascular contraction: hints provided by tissue-engineered substitutes. Cardiovasc Res. 2007;75(4):669-678.

    Article  CAS  PubMed  Google Scholar 

  34. Diebolt M, Germain L, Auger FA, Andriantsitohaina R. Mechanism of potentiation by polyphenols of contraction in human vein-engineered media. Am J Physiol Heart Circ Physiol. 2005;288(6):H2918-H2924.

    Article  CAS  PubMed  Google Scholar 

  35. Diebolt M, Laflamme K, Labbe R, Auger FA, Germain L, Andriantsitohaina R. Polyphenols modulate calcium-independent mechanisms in human arterial tissue-engineered vascular media. J Vasc Surg. 2007;46(4):764-772.

    Article  PubMed  Google Scholar 

  36. Laflamme K, Roberge CJ, Grenier G, et al. Adventitia contribution in vascular tone: insights from adventitia-derived cells in a tissue-engineered human blood vessel. Faseb J. 2006;20(8):1245-1247.

    Article  CAS  PubMed  Google Scholar 

  37. Laflamme K, Roberge CJ, Labonte J, et al. Tissue-engineered human vascular media with a functional endothelin system. Circulation. 2005;111(4):459-464.

    Article  CAS  PubMed  Google Scholar 

  38. L’Heureux N, Stoclet JC, Auger FA, Lagaud GJ, Germain L, Andriantsitohaina R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. Faseb J. 2001;15(2):515-524.

    Article  PubMed  Google Scholar 

  39. Stoclet JC, Andriantsitohaina R, L’Heureux N, Martinez C, Germain L, Auger F. Use of human vessels and human vascular smooth muscle cells in pharmacology. Cell Biol Toxicol. 1996;12(4-6):223-225.

    Article  CAS  PubMed  Google Scholar 

  40. Laflamme K, Roberge CJ, Pouliot S, D’Orleans-Juste P, Auger FA, Germain L. Tissue-engineered human vascular media produced in vitro by the self-assembly approach present functional properties similar to those of their native blood vessels. Tissue Eng. 2006;12(8):2275-2281.

    Article  CAS  PubMed  Google Scholar 

  41. Lin TC, Tintut Y, Lyman A, Mack W, Demer LL, Hsiai TK. Mechanical response of a calcified plaque model to fluid shear force. Ann Biomed Eng. 2006;34(10):1535-1541.

    Article  PubMed  Google Scholar 

  42. Han HC, Ku DN. Contractile responses in arteries subjected to hypertensive pressure in seven-day organ culture. Ann Biomed Eng. 2001;29(6):467-475.

    Article  CAS  PubMed  Google Scholar 

  43. Stegemann JP, Nerem RM. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann Biomed Eng. 2003;31(4):391-402.

    Article  PubMed  Google Scholar 

  44. Solan A, Niklason L. Age effects on vascular smooth muscle: an engineered tissue approach. Cell Transplant. 2005;14(7):481-488.

    Article  PubMed  Google Scholar 

  45. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. Faseb J. 1998;12(1):47-56.

    PubMed  Google Scholar 

  46. Cagiannos C, Abul-Khoudoud OR, DeRijk W, et al. Rapamycin-coated expanded polytetrafluoroethylene bypass grafts exhibit decreased anastomotic neointimal hyperplasia in a porcine model. J Vasc Surg. 2005;42(5):980-988.

    Article  PubMed  Google Scholar 

  47. Wallitt EJ, Jevon M, Hornick PI. Therapeutics of vein graft intimal hyperplasia: 100 years on. Ann Thorac Surg. 2007;84(1):317-323.

    Article  PubMed  Google Scholar 

  48. Min SK, Kenagy RD, Clowes AW. Induction of vascular atrophy as a novel approach to treating restenosis. A review. J Vasc Surg. 2008;47(3):662-670.

    Article  PubMed  Google Scholar 

  49. Bhardwaj S, Roy H, Yla-Herttuala S. Gene therapy to prevent occlusion of venous bypass grafts. Expert Rev Cardiovasc Ther. 2008;6(5):641-652.

    Article  CAS  PubMed  Google Scholar 

  50. Grenier G, Remy-Zolghadri M, Bergeron F, et al. Mechanical loading modulates the differentiation state of vascular smooth muscle cells. Tissue Eng. 2006;12(11):3159-3170.

    Article  CAS  PubMed  Google Scholar 

  51. Kashiwagi S, Izumi Y, Gohongi T, et al. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 2005;115(7):1816-1827.

    Article  CAS  PubMed  Google Scholar 

  52. Ford MC, Bertram JP, Hynes SR, et al. A macroporous hydrogel for the co-culture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc Natl Acad Sci U S A. 2006;103(8):2512-2517.

    Article  CAS  PubMed  Google Scholar 

  53. Hudon V, Berthod F, Black AF, Damour O, Germain L, Auger FA. A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol. 2003;148(6):1094-1104.

    Article  CAS  PubMed  Google Scholar 

  54. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007;109(11):4761-4768.

    Article  CAS  PubMed  Google Scholar 

  55. Black AF, Berthod F, L’Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998;12:1331-1340.

    CAS  PubMed  Google Scholar 

  56. Suuronen EJ, Muzakare L, Doillon CJ, et al. Promotion of angiogenesis in tissue engineering: developing multicellular matrices with multiple capacities. Int J Artif Organs. 2006;29(12):1148-1157.

    CAS  PubMed  Google Scholar 

  57. Suuronen EJ, Veinot JP, Wong S, et al. Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation. 2006;114(suppl 1):I138-I144.

    PubMed  Google Scholar 

  58. Weisz A, Koren B, Fischer L, Lewis BS, Flugelman MY. Therapeutic angiogenesis for ischemic syndromes. Isr Med Assoc J. 2000;suppl 2:52-57.

    Google Scholar 

  59. Kannan RY, Salacinski HJ, Edirisinghe MJ, Hamilton G, Seifalian AM. Polyhedral oligomeric silsequioxane-polyurethane nanocomposite microvessels for an artificial capillary bed. Biomaterials. 2006;27(26):4618-4626.

    Article  CAS  PubMed  Google Scholar 

  60. Karakitsos D, Patrianakos AP, Parthenakis FI, et al. Altered proximal aortic stiffness and endothelin plasma levels in diabetic patients with end-stage renal disease. ASAIO J. 2007;53(3):343-350.

    Article  PubMed  Google Scholar 

  61. Misra S, Fu AA, Rajan DK, et al. Expression of hypoxia inducible factor-1 alpha, macrophage migration inhibition factor, matrix metalloproteinase-2 and -9, and their inhibitors in hemodialysis grafts and arteriovenous fistulas. J Vasc Interv Radiol. 2008;19(2 pt 1):252-259.

    Article  PubMed  Google Scholar 

  62. Chou KJ, Lee PT, Chen CL, et al. Physiological changes during hemodialysis in patients with intradialysis hypertension. Kidney Int. 2006;69(10):1833-1838.

    Article  CAS  PubMed  Google Scholar 

  63. Clowes AW, Kirkman TR, Reidy MA. Mechanisms of arterial graft healing. Rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. Am J Pathol. 1986;123(2):220-230.

    CAS  PubMed  Google Scholar 

  64. Geary RL, Kohler TR, Vergel S, Kirkman TR, Clowes AW. Time course of flow-induced smooth muscle cell proliferation and intimal thickening in endothelialized baboon vascular grafts. Circ Res. 1994;74(1):14-23.

    CAS  PubMed  Google Scholar 

  65. Kenagy RD, Fischer JW, Lara S, Sandy JD, Clowes AW, Wight TN. Accumulation and loss of extracellular matrix during shear stress-mediated intimal growth and regression in baboon vascular grafts. J Histochem Cytochem. 2005;53(1):131-140.

    Article  CAS  PubMed  Google Scholar 

  66. Kraiss LW, Geary RL, Mattsson EJ, Vergel S, Au YP, Clowes AW. Acute reductions in blood flow and shear stress induce platelet-derived growth factor-A expression in baboon prosthetic grafts. Circ Res. 1996;79(1):45-53.

    CAS  PubMed  Google Scholar 

  67. Miura H, Nishibe T, Yasuda K, et al. The influence of node-fibril morphology on healing of high-porosity expanded polytetrafluoroethylene grafts. Eur Surg Res. 2002;34(3):224-231.

    Article  CAS  PubMed  Google Scholar 

  68. Shi Q, Bhattacharya V, Hong-De Wu M, Sauvage LR. Utilizing granulocyte colony-stimulating factor to enhance vascular graft endothelialisation from circulating blood cells. Ann Vasc Surg. 2002;16(3):314-320.

    Article  PubMed  Google Scholar 

  69. Sterpetti AV, Hunter WJ, Schultz RD, Farina C. Healing of high-porosity polytetrafluoroethylene arterial grafts is influenced by the nature of the surrounding tissue. Surgery. 1992;111(6):677-682.

    CAS  PubMed  Google Scholar 

  70. Davids L, Dower T, Zilla P. The lack of healing in conventional vascular grafts. In: Zilla P, Greisler H, eds. Tissue Engineering of Prosthetic Vascular Grafts. Austin: Landes; 1999:3-44.

    Google Scholar 

  71. Crombez M, Chevallier P, Gaudreault RC, Petitclerc E, Mantovani D, Laroche G. Improving arterial prosthesis neo-endothelialisation: application of a proactive VEGF construct onto PTFE surfaces. Biomaterials. 2005;26(35):7402-7409.

    Article  CAS  PubMed  Google Scholar 

  72. Begovac PC, Thomson RC, Fisher JL, Hughson A, Gallhagen A. Improvements in GORE-TEX vascular graft performance by Carmeda BioActive surface heparin immobilization. Eur J Vasc Endovasc Surg. 2003;25(5):432-437.

    Article  CAS  PubMed  Google Scholar 

  73. Christenson JT, Thulesius O, Owunwanne A, Nazzal M. Forskolin impregnation of small calibre PTFE grafts lowers early platelet graft sequestration and improves patency in a sheep model. Eur J Vasc Surg. 1991;5(3):271-275.

    Article  CAS  PubMed  Google Scholar 

  74. Heise M, Schmidmaier G, Husmann I, et al. PEG-hirudin/iloprost coating of small diameter ePTFE grafts effectively prevents pseudointima and intimal hyperplasia development. Eur J Vasc Endovasc Surg. 2006;32(4):418-424.

    Article  CAS  PubMed  Google Scholar 

  75. Lin PH, Chen C, Bush RL, Yao Q, Lumsden AB, Hanson SR. Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model. J Vasc Surg. 2004;39(6):1322-1328.

    Article  PubMed  Google Scholar 

  76. Murray-Wijelath J, Lyman DJ, Wijelath ES. Vascular graft healing. III. FTIR analysis of ePTFE graft samples from implanted bigrafts. J Biomed Mater Res B Appl Biomater. 2004;70(2):223-232.

    Article  PubMed  CAS  Google Scholar 

  77. Nishibe T, Okuda Y, Kumada T, Tanabe T, Yasuda K. Enhanced graft healing of high-porosity expanded polytetrafluoroethylene grafts by covalent bonding of fibronectin. Surg Today. 2000;30(5):426-431.

    Article  CAS  PubMed  Google Scholar 

  78. Pfeiffer T, Kever M, Grabitz K, et al. Healing characteristics of small-calibre vascular prostheses coated with plasmin-treated fibrin - an experimental study. Vasa. 2000;29(2):117-124.

    Article  CAS  PubMed  Google Scholar 

  79. Shimada T, Nishibe T, Miura H, et al. Improved healing of small-caliber, long-fibril expanded polytetrafluoroethylene vascular grafts by covalent bonding of fibronectin. Surg Today. 2004;34(12):1025-1030.

    Article  CAS  PubMed  Google Scholar 

  80. Rotmans JI, Heyligers JM, Verhagen HJ, et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialisation but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 2005;112(1):12-18.

    Article  CAS  PubMed  Google Scholar 

  81. Bosiers M, Deloose K, Verbist J, et al. Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting: 1-year results. J Vasc Surg. 2006;43(2):313-318; discussion 318-319.

    Article  PubMed  Google Scholar 

  82. Devine C, McCollum C. Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: five-year results of a prospective randomized multicenter clinical trial. J Vasc Surg. 2004;40(5):924-931.

    Article  PubMed  Google Scholar 

  83. Robinson BI, Fletcher JP. Fluoropolymer coated Dacron or polytetrafluoroethylene for femoropopliteal bypass grafting: a multicentre trial. ANZ J Surg. 2003;73(3):95-99.

    Article  PubMed  Google Scholar 

  84. Walluscheck KP, Bierkandt S, Brandt M, Cremer J. Infrainguinal ePTFE vascular graft with bioactive surface heparin bonding. First clinical results. J Cardiovasc Surg (Torino). 2005;46(4):425-430.

    CAS  Google Scholar 

  85. Andrews KD, Feugier P, Black RA, Hunt JA. Vascular prostheses: performance related to cell-shear responses. J Surg Res. 2007;149(1):39-46.

    Article  PubMed  CAS  Google Scholar 

  86. Fields C, Cassano A, Makhoul RG, et al. Evaluation of electrostatically endothelial cell seeded expanded polytetrafluoroethylene grafts in a canine femoral artery model. J Biomater Appl. 2002;17(2):135-152.

    Article  PubMed  Google Scholar 

  87. Graham LM, Burkel WE, Ford JW, Vinter DW, Kahn RH, Stanley JC. Expanded polytetrafluoroethylene vascular prostheses seeded with enzymatically derived and cultured canine endothelial cells. Surgery. 1982;91(5):550-559.

    CAS  PubMed  Google Scholar 

  88. Herring M, Baughman S, Glover J, et al. Endothelial seeding of Dacron and polytetrafluoroethylene grafts: the cellular events of healing. Surgery. 1984;96(4):745-755.

    CAS  PubMed  Google Scholar 

  89. Hussain SM, Long GW, Juleff RS, et al. Comparison of immediate seeding of endothelial cells with culture lining of small diameter ePTFE carotid interposition grafts. J Surg Res. 1991;51(1):33-39.

    Article  CAS  PubMed  Google Scholar 

  90. Poole-Warren LA, Schindhelm K, Graham AR, Slowiaczek PR, Noble KR. Performance of small diameter synthetic vascular prostheses with confluent autologous endothelial cell linings. J Biomed Mater Res. 1996;30(2):221-229.

    Article  CAS  PubMed  Google Scholar 

  91. Zamora JL, Navarro LT, Ives CL, Weilbaecher DG, Gao ZR, Noon GP. Seeding of arteriovenous prostheses with homologous endothelium. A preliminary report. J Vasc Surg. 1986;3(6):860-866.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang N, Zhang H, Han S, et al. Induction of bone marrow CD34+ cells and endothelialisation of polytetrafluoroethylene prostheses. ANZ J Surg. 2007;77(6):469-473.

    Article  PubMed  Google Scholar 

  93. Zilla P, Preiss P, Groscurth P, et al. In vitro-lined endothelium: initial integrity and ultrastructural events. Surgery. 1994;116(3):524-534.

    CAS  PubMed  Google Scholar 

  94. Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P. Clinical autologous in vitro endothelialisation of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery. 1999;126(5):847-855.

    CAS  PubMed  Google Scholar 

  95. Deutsch M, Meinhart J, Vesely M, et al. In vitro endothelialisation of expanded polytetrafluoroethylene grafts: a clinical case report after 41 months of implantation. J Vasc Surg. 1997;25(4):757-763.

    Article  CAS  PubMed  Google Scholar 

  96. Meinhart JG, Deutsch M, Fischlein T, Howanietz N, Froschl A, Zilla P. Clinical autologous in vitro endothelialisation of 153 infrainguinal ePTFE grafts. Ann Thorac Surg. 2001;71(suppl 5):S327-S331.

    Article  CAS  PubMed  Google Scholar 

  97. Leseche G, Ohan J, Bouttier S, Palombi T, Bertrand P, Andreassian B. Above-knee femoropopliteal bypass grafting using endothelial cell seeded PTFE grafts: five-year clinical experience. Ann Vasc Surg. 1995;suppl 9:S15-S23.

    Article  Google Scholar 

  98. Keough EM, Callow AD, Connolly RJ, Weinberg KS, Aalberg JJ, O’Donnell TF Jr. Healing pattern of small caliber dacron grafts in the baboon: an animal model for the study of vascular prostheses. J Biomed Mater Res. 1984;18(3):281-292.

    Article  CAS  PubMed  Google Scholar 

  99. Shi Q, Wu MH, Hayashida N, Wechezak AR, Clowes AW, Sauvage LR. Proof of fallout endothelialisation of impervious Dacron grafts in the aorta and inferior vena cava of the dog. J Vasc Surg. 1994;20(4):546-556; discussion 556-557.

    CAS  PubMed  Google Scholar 

  100. Stewart GJ, Essa N, Chang KH, Reichle FA. A scanning and transmission electron microscope study of the luminal coating on Dacron prostheses in the canine thoracic aorta. J Lab Clin Med. 1975;85(2):208-226.

    CAS  PubMed  Google Scholar 

  101. Szilagyi DE, Smith RF, Elliott JP, Allen HM. Long-term behavior of a dacron arterial substitute: clinical, roentgenologic and histologic correlations. Ann Surg. 1965;162(3):453-477.

    Article  CAS  PubMed  Google Scholar 

  102. Berger K, Sauvage LR, Rao AM, Wood SJ. Healing of arterial prostheses in man: its incompleteness. Ann Surg. 1972;175(1):118-127.

    Article  CAS  PubMed  Google Scholar 

  103. Schultz GA, Sauvage LR, Mathisen SR, et al. A five- to seven-year experience with externally-supported Dacron prostheses in axillofemoral and femoropopliteal bypass. Ann Vasc Surg. 1986;1(2):214-224.

    CAS  PubMed  Google Scholar 

  104. Phaneuf MD, Dempsey DJ, Bide MJ, Quist WC, LoGerfo FW. Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties. Biomaterials. 2001;22(5):463-469.

    Article  CAS  PubMed  Google Scholar 

  105. Sun LB, Utoh J, Moriyama S, Tagami H, Okamoto K, Kitamura N. Pretreatment of a Dacron graft with tissue factor pathway inhibitor decreases thrombogenicity and neointimal thickness: a preliminary animal study. ASAIO J. 2001;47(4):325-328.

    Article  CAS  PubMed  Google Scholar 

  106. Lambert AW, Fox AD, Williams DJ, Horrocks M, Budd JS. Experience with heparin-bonded collagen-coated grafts for infrainguinal bypass. Cardiovasc Surg. 1999;7(5):491-494.

    Article  CAS  PubMed  Google Scholar 

  107. Burkel WE, Ford JW, Vinter DW, Kahn RH, Graham LM, Stanley JC. Fate of knitted dacron velour vascular grafts seeded with enzymatically derived autologous canine endothelium. Trans Am Soc Artif Intern Organs. 1982;28:178-184.

    CAS  PubMed  Google Scholar 

  108. Shepard AD, Eldrup-Jorgensen J, Keough EM, et al. Endothelial cell seeding of small-caliber synthetic grafts in the baboon. Surgery. 1986;99(3):318-326.

    CAS  PubMed  Google Scholar 

  109. Bezuidenhout D, Davies N, Zilla P. Effect of well defined dodecahedral porosity on inflammation and angiogenesis. ASAIO J. 2002;48(5):465-471.

    Article  CAS  PubMed  Google Scholar 

  110. Jeschke MG, Hermanutz V, Wolf SE, Koveker GB. Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene. J Vasc Surg. 1999;29(1):168-176.

    Article  CAS  PubMed  Google Scholar 

  111. Therrien M, Guidoin R, Adnot A, Paynter R. Hydrophobic and fibrillar microporous polyetherurethane urea prosthesis: an ESCA study on the internal and external surfaces of explanted grafts. Biomaterials. 1989;10(8):517-520.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang Z, Wang Z, Liu S, Kodama M. Pore size, tissue ingrowth, and endothelialisation of small-diameter microporous polyurethane vascular prostheses. Biomaterials. 2004;25(1):177-187.

    Article  PubMed  CAS  Google Scholar 

  113. Aldenhoff YB, van Der Veen FH, ter Woorst J, Habets J, Poole-Warren LA, Koole LH. Performance of a polyurethane vascular prosthesis carrying a dipyridamole (Persantin) coating on its lumenal surface. J Biomed Mater Res. 2001;54(2):224-233.

    Article  CAS  PubMed  Google Scholar 

  114. Taite LJ, Yang P, Jun HW, West JL. Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialisation with decreased platelet adhesion. J Biomed Mater Res B Appl Biomater. 2008;84(1):108-116.

    PubMed  Google Scholar 

  115. Fleser PS, Nuthakki VK, Malinzak LE, et al. Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg. 2004;40(4):803-811.

    Article  PubMed  Google Scholar 

  116. Ishii Y, Kronengold RT, Virmani R, et al. Novel bioengineered small caliber vascular graft with excellent one-month patency. Ann Thorac Surg. 2007;83(2):517-525.

    Article  PubMed  Google Scholar 

  117. Doi K, Matsuda T. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin. J Biomed Mater Res. 1997;34(3):361-370.

    Article  CAS  PubMed  Google Scholar 

  118. Pierce CM, Wade A, Mok Q. Heparin-bonded central venous lines reduce thrombotic and infective complications in critically ill children. Intensive Care Med. 2000;26(7):967-972.

    Article  CAS  PubMed  Google Scholar 

  119. Yue X, van der Lei B, Schakenraad JM, et al. Smooth muscle cell seeding in biodegradable grafts in rats: a new method to enhance the process of arterial wall regeneration. Surgery. 1988;103(2):206-212.

    CAS  PubMed  Google Scholar 

  120. Turner NJ, Murphy MO, Kielty CM, et al. Alpha2(VIII) collagen substrata enhance endothelial cell retention under acute shear stress flow via an alpha2beta1 integrin-dependent mechanism: an in vitro and in vivo study. Circulation. 2006;114(8):820-829.

    Article  CAS  PubMed  Google Scholar 

  121. Miwa H, Matsuda T. An integrated approach to the design and engineering of hybrid arterial prostheses. J Vasc Surg. 1994;19(4):658-667.

    CAS  PubMed  Google Scholar 

  122. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28(35):5271-5279.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang X, Baughman CB, Kaplan DL. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials. 2008;29(14):2217-2227.

    Article  CAS  PubMed  Google Scholar 

  124. Christenson JT, Owunwanne A, Nazzal M. Thrombogenicity and long-term patency in autologous vein, polytetrafluoroethylene (PTFE) and silk grafts in a sheep model: evaluated through the use of indium-III-labeled platelets. Am J Physiol Imaging. 1990;5(2):80-83.

    CAS  PubMed  Google Scholar 

  125. Chu CF, Lu A, Liszkowski M, Sipehia R. Enhanced growth of animal and human endothelial cells on biodegradable polymers. Biochim Biophys Acta. 1999;1472(3):479-485.

    CAS  PubMed  Google Scholar 

  126. Niklason LE, Abbott W, Gao J, et al. Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg. 2001;33(3):628-638.

    Article  CAS  PubMed  Google Scholar 

  127. Lim SH, Cho SW, Park JC, et al. Tissue-engineered blood vessels with endothelial nitric oxide synthase activity. J Biomed Mater Res B Appl Biomater. 2008;85(2):537-546.

    PubMed  Google Scholar 

  128. Roh JD, Brennan MP, Lopez-Soler RI, et al. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques. J Pediatr Surg. 2007;42(1):198-202.

    Article  PubMed  Google Scholar 

  129. Shinoka T, Shum-Tim D, Ma PX, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 1998;115(3):536-545; discussion 545-546.

    Article  Google Scholar 

  130. Shum-Tim D, Stock U, Hrkach J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg. 1999;68(6):2298-2304; discussion 2305.

    Article  CAS  PubMed  Google Scholar 

  131. Hoerstrup SP, Cummings Mrcs I, Lachat M, et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation. 2006;114(suppl I159-I166.

    PubMed  Google Scholar 

  132. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344(7):532-533.

    Article  PubMed  Google Scholar 

  133. Shin’oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129(6):1330-1338.

    Article  PubMed  Google Scholar 

  134. Zhang L, Ao Q, Wang A, et al. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res A. 2006;77(2):277-284.

    PubMed  Google Scholar 

  135. Arrigoni C, Camozzi D, Imberti B, Mantero S, Remuzzi A. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Biomaterials. 2006;27(4):623-630.

    Article  CAS  PubMed  Google Scholar 

  136. Hirai J, Kanda K, Oka T, Matsuda T. Highly oriented, tubular hybrid vascular tissue for a low pressure circulatory system. ASAIO J. 1994;40(3):M383-M388.

    Article  CAS  PubMed  Google Scholar 

  137. Cummings CL, Gawlitta D, Nerem RM, Stegemann JP. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials. 2004;25(17): 3699-3706.

    Article  CAS  PubMed  Google Scholar 

  138. Seliktar D, Nerem RM, Galis ZS. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng. 2003;9(4):657-666.

    Article  CAS  PubMed  Google Scholar 

  139. Couet F, Mantovani D. Experimental validation of a new approach for the development of mechano-compatible composite scaffolds for vascular tissue engineering. J Mater Sci Mater Med. 2008;19(7):2551-2554.

    Article  CAS  PubMed  Google Scholar 

  140. Kobashi T, Matsuda T. Fabrication of compliant hybrid grafts supported with elastomeric meshes. Cell Transplant. 1999;8(5):477-488.

    CAS  PubMed  Google Scholar 

  141. Lv Q, Hu K, Feng Q, Cui F. Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility. J Biomed Mater Res A. 2008;84(1):198-207.

    PubMed  Google Scholar 

  142. Berglund JD, Nerem RM, Sambanis A. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 2004;10(9-10):1526-1535.

    Article  CAS  PubMed  Google Scholar 

  143. Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng. 2000;122(3):216-223.

    Article  CAS  PubMed  Google Scholar 

  144. He H, Shirota T, Yasui H, Matsuda T. Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential. J Thorac Cardiovasc Surg. 2003;126(2):455-464.

    Article  PubMed  Google Scholar 

  145. Hirai J, Matsuda T. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant. 1996;5(1):93-105.

    Article  CAS  PubMed  Google Scholar 

  146. Grassl ED, Oegema TR, Tranquillo RT. A fibrin-based arterial media equivalent. J Biomed Mater Res A. 2003;66(3):550-561.

    Article  CAS  PubMed  Google Scholar 

  147. Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288(3):H1451-H1460.

    Article  CAS  PubMed  Google Scholar 

  148. Campbell JH, Efendy JL, Campbell GR. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res. 1999;85(12):1173-1178.

    CAS  PubMed  Google Scholar 

  149. Chue WL, Campbell GR, Caplice N, et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg. 2004;39(4):859-867.

    Article  PubMed  Google Scholar 

  150. Amiel GE, Komura M, Shapira O, et al. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng. 2006;12(8):2355-2365.

    Article  CAS  PubMed  Google Scholar 

  151. Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 2003;12(6):659-666.

    PubMed  Google Scholar 

  152. McFetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 2004;70(2):224-234.

    Article  PubMed  CAS  Google Scholar 

  153. Bader A, Steinhoff G, Strobl K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation. 2000;70(1):7-14.

    CAS  PubMed  Google Scholar 

  154. Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol. 1999;17(11):1083-1086.

    Article  CAS  PubMed  Google Scholar 

  155. Martin ND, Schaner PJ, Tulenko TN, et al. In vivo behavior of decellularized vein allograft. J Surg Res. 2005;129(1):17-23.

    Article  PubMed  Google Scholar 

  156. Matsuura JH, Black KS, Levitt AB, et al. Cellular remodeling of depopulated bovine ureter used as an arteriovenous graft in the canine model. J Am Coll Surg. 2004;198(5):778-783.

    Article  PubMed  Google Scholar 

  157. Nemcova S, Noel AA, Jost CJ, Gloviczki P, Miller VM, Brockbank KG. Evaluation of a xenogeneic acellular collagen matrix as a small-diameter vascular graft in dogs - preliminary observations. J Invest Surg. 2001;14(6):321-330.

    Article  CAS  PubMed  Google Scholar 

  158. Roeder RA, Lantz GC, Geddes LA. Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts - a preliminary report. Biomed Instrum Technol. 2001;35(2):110-120.

    CAS  PubMed  Google Scholar 

  159. Teebken OE, Pichlmaier AM, Haverich A. Cell seeded decellularized allogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model. Eur J Vasc Endovasc Surg. 2001;22(2):139-145.

    Article  CAS  PubMed  Google Scholar 

  160. L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12(3):361-365.

    Article  PubMed  CAS  Google Scholar 

  161. L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med. 2007;357(14):1451-1453.

    Article  PubMed  Google Scholar 

  162. Nieponice A, Soletti L, Guan J, et al. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials. 2008;29(7):825-833.

    Article  CAS  PubMed  Google Scholar 

  163. Etz CD, Homann T, Silovitz D, et al. Vascular graft replacement of the ascending and descending aorta: do Dacron grafts grow? Ann Thorac Surg. 2007;84(4):1206-1212; discussion 1212-1213.

    Article  PubMed  Google Scholar 

  164. Vascular prostheses: performance related to cell-shear responses. <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18395748/>; 2007. Accessed 27.05.08.

  165. Wilson GJ, MacGregor DC, Klement P, et al. Anisotropic polyurethane nonwoven conduits: a new approach to the design of a vascular prosthesis. Trans Am Soc Artif Intern Organs. 1983;29:260-268.

    CAS  PubMed  Google Scholar 

  166. Zdrahala RJ. Small caliber vascular grafts. Part II: polyurethanes revisited. J Biomater Appl. 1996;11(1):37-61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Caroline Basoni and Dr. Valérie Cattan for their help with the literature review, and Miss Marie-Christine Fiola for Fig. 9.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro D’Orléans-Juste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

D’Orléans-Juste, P., Lacroix, D., Germain, L., Auger, F.A. (2009). Tissue-Engineered Vascular Substitutes: New Models Toward Successful Small Diameter Grafts. In: Abraham, D., Clive, H., Dashwood, M., Coghlan, G. (eds) Advances in Vascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84882-637-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-637-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-636-6

  • Online ISBN: 978-1-84882-637-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics