Skip to main content

Actuator Principles and Classification

  • Chapter

Abstract

An actuator can be defined [16, 15] as an energy converter which transforms energy from an external source into mechanical energy in a controllable way. The actuator input quantities depend on the type of energy used and can be chosen among all the quantities involved in the energy conversion from the energy source to the output mechanical quantities. For electromagnetic, piezoelectric and magnetostrictive actuators the input quantities can be the current, the charge or the voltage; for fluid power actuators the fluid pressure or the flow; for shape memory alloys and thermal expansion actuators the temperature. The output quantities are of mechanical nature. We will distinguish among (primary) output quantities (actuator force and stroke), and (derived) output quantities, which can be computed on the basis of the primary quantities. The most used derived output quantities are the actuator work and the actuator power.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando Y, Ikehara T, Matsumoto S (2002) Design, fabrication and testing of new comb actuators realizing three-dimensional continuous motions. Sensors and Actuators A: Physical 97-98:579–586

    Article  Google Scholar 

  2. Auricchio F (2005) Shape memory alloys: applications, micromechanics, macromodeling and numerical simulations. PhD thesis, University of California at Berkeley

    Google Scholar 

  3. Banks HT, Smith RC, Wang Y (1996) Smart Material Structures Modeling, Estimation and Control. Wiley, New York

    MATH  Google Scholar 

  4. Birman V (1997) Review of mechanics of shape memory alloy structures. Applied Mechanics Reviews 50:629–645

    Article  Google Scholar 

  5. Bishop RH (ed) (2002) The Mechatronics Handbook. CRC Press

    Google Scholar 

  6. Campanile LF (2007) Adaptive Structures: Engineering applications, John Wiley and Sons, chap Lightweight shape-adaptable airfoils: a new challenge for an old dream, pp 89–135

    Google Scholar 

  7. Chapman S (2004) Electric Machinery Fundamentals. McGraw-Hill Professional

    Google Scholar 

  8. Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA Journal 40(11):2145–2187

    Article  Google Scholar 

  9. Culshaw B (1996) Smart Structures and Materials. Artech House Optoelectronics Library, Boston

    Google Scholar 

  10. Curie J, Curie P (1880) Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société Minéralogique de France 3:90–93

    Google Scholar 

  11. Duerig T, Melton K, Stockel D, Wayman C (eds) (1990) Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, London

    Google Scholar 

  12. Fremond M, Miyazaki S (1996) Shape Memory Alloys. Springer-Verlag, New York

    Google Scholar 

  13. Funakubo H (ed) (1987) Shape memory alloys. Gordon and Breach Science Publishers, New York

    Google Scholar 

  14. Giurgiutiu V, Rogers CA (1996) Energy based comparision of solid state induced strain actuators. Journal of intelligent material systems and structures 7

    Google Scholar 

  15. Gomis-Bellmunt O (2007) Design, modeling, identification and control of mechatronic systems. PhD thesis, Technical University of Catalonia

    Google Scholar 

  16. Gomis-Bellmunt O, Galceran-Arellano S, Sudrià-Andreu A, Montesinos-Miracle D, Campanile LF (2007) Linear electromagnetic actuator modeling for optimization of mechatronic and adaptronic systems. Mechatronics 17:153–163

    Article  Google Scholar 

  17. Grunwald A, Olabi A (2008) Design of a magnetostrictive (ms) actuator. Sensors and Actuators A: Physical 144:161–175

    Article  Google Scholar 

  18. Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. Proc R Soc Lond A 453:2185–2205

    Article  Google Scholar 

  19. IEEE Ultrasonics F, Society FC (1987) IEEE Standards on Piezoelectricity. IEEE

    Google Scholar 

  20. Jänker P, Martin W (1993) Performance and characteristics of actuator material. In: Proc. of the 4th International Conference on Adaptive Structures, Cologne, Germany, pp 126–138

    Google Scholar 

  21. Janocha H (2000) Adaptronics and Smart Structures. Springer Verlag

    Google Scholar 

  22. Krause P (1986) Analysis of Electric Machinery. McGraw-Hill

    Google Scholar 

  23. Kuribayashi K (1993) Criteria for the evaluation of new actuators as energy converters. Advanced robotics 7(4):289–307

    Article  Google Scholar 

  24. Matsuzaki Y (1997) Smart structures research in Japan. Smart Materials and Structures 6:R1–R10

    Article  Google Scholar 

  25. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science 50(5):511–678

    Article  Google Scholar 

  26. PI PI (2005-2006) The world of Micro- and Nanopositioning

    Google Scholar 

  27. Uchino K (1997) Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers

    Google Scholar 

  28. Uchino K (2000) Ferroelectric Devices. Marcel Dekker Inc.

    Google Scholar 

  29. Utku S (1998) Theory of Adaptive Structures. CRC Press, New York

    Google Scholar 

  30. Waanders J (1991) Piezoelectric Ceramics. Properties and Applications, 1st edn. Philips Components, Eindhoven

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). Actuator Principles and Classification. In: Design Rules for Actuators in Active Mechanical Systems. Springer, London. https://doi.org/10.1007/978-1-84882-614-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-614-4_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-613-7

  • Online ISBN: 978-1-84882-614-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics