Skip to main content

Simulating the Human Motion Under Functional Electrical Stimulation Using the HuMAnS Toolbox

  • Chapter
  • First Online:
Recent Advances in the 3D Physiological Human

Abstract

Mathematical models of the skeletal muscle can support the development of neuroprostheses to restore functional movements in individuals with motor deficiencies by means of XE “Functional electrical stimulation (XE “FES” ). Since many years, numerous skeletal muscle models have been proposed to express the relationship between muscle activation and generated force. One of them (Makssoud et al.), integrates the Hill model and the physiological one based on Huxley work allowing the muscle activation under FES. We propose in this chapter an improvement of this model by modifying the activation part. These improvements are highlighted through the HuMAnS (Humanoid Motion Analysis and Simulation) toolbox using a 3D biomechanical model of human named Human 36. This chapter describes this toolbox and the software implementation of the model. Then, we present the results of the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El Makssoud H (2005) Modélisation et Identification des Muscles Squelettiques sous Stimulation Electrique Fonctionnelle. PhD Thesis, Université Montpellier 2

    Google Scholar 

  2. El Makssoud H, Guiraud D, Poignet P (2004) Mathematical muscle model for functional electrical stimulation control strategies. In: Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 1282–1287

    Google Scholar 

  3. Hill AV (1938) The heat of shortening and the dynamic constants in muscle. Proceeding of the Royal Society, London, Series B 126:136–195

    Article  Google Scholar 

  4. Huxley AF (1957) Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry 7:255–318

    Google Scholar 

  5. Wieber PB, Billet F, Boissieux L, Pissard-Gibollet R (2006) The HuMAnS toolbox, a homogeneous framework for motion capture, analysis and simulation. In: Ninth International Symposium on the 3D Analysis of Human Movement

    Google Scholar 

  6. Delp SL, Loan JP (1995) A graphics-based software system to develop and analyze models of musculoskeletal structures. Computers in Biology and Medicine 25:21–34

    Article  Google Scholar 

  7. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: Open-source software to create and analyse dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11):1940–1950

    Article  Google Scholar 

  8. Nakamura Y, Yamane K, Fujita Y, Suzuki I (2005) Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. IEEE Transactions on Robotics 21(1):58–66

    Article  Google Scholar 

  9. Zajac FE (1989) Muscle and tendon: Properties, models, scaling and application to biomechanics and motor control. CRC Critical Reviews in Biomedical Engineering 17:359–411

    Google Scholar 

  10. Wieber PB (2000) Modélisation et commande d’un robot marcheur anthropomorphe. PhD Thesis, Ecole des mines de Paris

    Google Scholar 

  11. Bottecchia S (2006) Estimation de posture : vers la prise en compte de la 3° dimension sur le modèle biomécanique. Rapport de stage de Master II Recherche, Lirmm, Montpellier

    Google Scholar 

  12. Hayashibe M, Poignet P, Guiraud D, Makssoud H (2008) Nonlinear identification of skeletal muscle dynamics with sigma-point Kalman filter for model-based FES. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2049–2054

    Google Scholar 

Download references

Acknowledgments

Thanks to C. Azevedo-Coste, M. Benoussaad, and R. Mozul for their precious help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Eckert, M., Hayashibe, M., Guiraud, D., Wieber, Pb., Fraisse, P. (2009). Simulating the Human Motion Under Functional Electrical Stimulation Using the HuMAnS Toolbox. In: Magnenat-Thalmann, N., Zhang, J., Feng, D. (eds) Recent Advances in the 3D Physiological Human. Springer, London. https://doi.org/10.1007/978-1-84882-565-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-565-9_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-564-2

  • Online ISBN: 978-1-84882-565-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics