Skip to main content

Multilocomotion Robot: Novel Concept, Mechanism, and Control of Bio-inspired Robot

  • Chapter
Artificial Life Models in Hardware

In the background of robotics development, there are two explicit expectancies toward robots as follows.

  1. 1.

    Executing repetitive tasks human get tired to do.

  2. 2.

    Executing dangerous or hard work human cannot do on behalf of humans.

From such background, industrial robots were developed to conduct tasks that were hard physically for humans, such as conveyancing heavy materials or implementing oppressive work such as marathon uncomplicated operation. Besides, it is dangerous for workers to put tasks in practice in construction site, nuclear power plant, or outer space, hence it is desired to develop the robot substitute for human workers.

On the other hand, in the age of an aging society, the prospective role of robots is turning gradually from just working machines doing monotonous work in factories to partners who support human life, and putting to practical use of such “partner robot” is expected. To realize this kind of function, it is necessary to accomplish the ability to recognize circumstances and also to achieve the ability to move toward the objective point autonomously in the various environments. “Bio-inspired robot” imitating motion of living creatures can be considered prepartner robot, because the working area of a partner robot is living environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R.M.: Exploring Biomechanics: Animals in Motion. W. H. Freeman, San Francisco, CA (1992)

    Google Scholar 

  2. Asano, Y., Doi, M., Hasegawa, Y., Matsuno, T., Fukuda, T.: Quadruped walking by joint-interlocking control based on the assumption of point-contact. Transactions of the Japan Society of Mechanical Engineers, Series C 73(727), (in Japanese) (2007)

    Google Scholar 

  3. Bertram, J.E.A., Chang, Y.H.: Mechanical energy oscillations of two brachiation gaits: Measurement and simulation. American Journal of Physical Anthropology 115, 319–326 (2001)

    Article  Google Scholar 

  4. Bertram, J.E.A., Ruina, A., Cannon, C.E., Chang, Y.H., Coleman, M.J.: A point-mass model of gibbon locomotion. Journal of Experimental Biology 202, 2609–2617 (1999)

    Google Scholar 

  5. Chang, Y.H., Bertram, J.E.A., Lee, E.V.: External forces and torques generated by the brachi-ating white-handed gibbon (hylobates lar). American Journal of Physical Anthropology 113, 201–216 (2000)

    Article  Google Scholar 

  6. Channon, P.H., Hopkins, S.H., Pham, D.T.: A variational aproach to the optimization of gait for a bipedal robot. Journal of Mechanical Engineering Science(Part C) 210, 177–186 (1996)

    Google Scholar 

  7. Doi, M., Hasegawa, Y., Fukuda, T.: Passive dynamic autonomous control of bipedal walking. In: Proceedings of IEEE/RSJ International Conference on Humanoid Robots, pp. 811–829 (2004)

    Google Scholar 

  8. Doi, M., Hasegawa, Y., Fukuda, T.: 3D dynamic walking based on the inverted pendulum model with two degree of underactuation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2788–2793 (2005)

    Google Scholar 

  9. Donelan, J.M., Kram, R., Kuo, A.D.: Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics 35, 117–124 (2002)

    Article  Google Scholar 

  10. Eimerl, S., DeVore, I.: The Primates. Time-Life Books (1966)

    Google Scholar 

  11. Fleagle, J.: Dynamics of a brachiating siamang (hylobates (symphalangus) syndactylus). Nature 248(445), 259–260 (1974)

    Article  Google Scholar 

  12. Floyd, S., Sitti, M.: Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot. IEEE Transactions on Robotics 24(3), 698–709 (2008)

    Article  Google Scholar 

  13. Formal'sky, A., Chevallereau, C., Perrin, B.: On ballistic walking locomotion of a quadruped. International Journal of Robotics Research 19(8), 743–761 (2000)

    Article  Google Scholar 

  14. Fukuda, T., Doi, M., Hasegawa, Y., Kajima, H.: Multi-locomotion control of biped locomotion and brachiation robot, In: Fast Motions in Biomechanics And Robotics: Optimization And Feedback Control. Springer-Verlag, pp. 121–145 (2006)

    Google Scholar 

  15. Fukuda, T., Hosokai, H., Kondo, Y.: Brachiation type of mobile robot. In: Proceedings of IEEE International Conference on Advanced Robotics, pp. 915–920 (1991)

    Google Scholar 

  16. Fukuda, T., Kojima, S., Sekiyama, K., Hasegawa, Y.: Design method of brachiation controller based on virtual holonomic constraint. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 450–455 (2007)

    Google Scholar 

  17. Fukuda, T., Saito, F., Arai, F.: A study on the brachiation type of mobile robot (heuristic creation of driving input and control using cmac). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 478–483 (1991)

    Google Scholar 

  18. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. International Journal of Robotics Research 22(3–4), 187–202 (2003)

    Google Scholar 

  19. Hasegawa, Y., Fukuda, T., Shimojima, K.: Self-scaling reinforcement learning for fuzzy logic controller — Applications to motion control of two-link brachiation robot. IEEE Transactions on Industrial Electronics 46, 1123–1131 (1999)

    Article  Google Scholar 

  20. Herr, H.M., McMahon, T.A.: A galloping horse model. International Journal of Robotics Research 20(1), 26–37 (2001)

    Article  Google Scholar 

  21. Herr, H.M., McMahon, T.A.: A trotting horse model. International Journal of Robotics Research 19(6), 566–581 (2001)

    Google Scholar 

  22. Hoyt, D.F., Taylor, C.R.: Gait and the energetics of locomotion in horses. Nature 292(16), 239–240 (1981)

    Article  Google Scholar 

  23. Kajima, H., Doi, M., Hasegawa, Y., Fukuda, T.: A study on brachiation controller for a multi-locomotion robot — Realization of smooth, continuous brachiation. Advanced Robotics 18(10), 1025–1038 (2004)

    Article  Google Scholar 

  24. Kajima, H., Hasegawa, Y., Doi, M., Fukuda, T.: Energy-based swing-back control for continuous brachiation of a multilocomotion robot. International Journal of Intelligent Systems 21(9), 1025–1038 (2006)

    Article  Google Scholar 

  25. Kiguchi, K., Kusumoto, Y., Watanabe, K., Izumi, K., Fukuda, T.: Enegy-optimal gait analysis of quadruped robots. Artificial Life and Robotics 6, 120–125 (2002)

    Article  Google Scholar 

  26. Kimura, H., Fukuoka, Y., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research 26(5), 475–490 (2007)

    Article  Google Scholar 

  27. Mori, M., Hirose, S.: Development of active cord mechanism acm-r3 with agile 3D mobility. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1552–1557 (2001)

    Google Scholar 

  28. Mori, M., Hirose, S.: Three-dimensional serpentine motion and lateral rolling by active cord mechanism acm-r3. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 829–834 (2002)

    Google Scholar 

  29. Muybridge, E.: Animals in Motion. Dover, NY(1957)

    Google Scholar 

  30. Nakanishi, J., Fukuda, T., Shimojima, K.: A brachiating robot controller. IEEE Transactions on Robotics and Automation 16(2), 109–123 (2000)

    Article  Google Scholar 

  31. Okada, M., Nakamura, Y.: Development of cybernetic shoulder — A three dof mechanism that imitates human shoulder-motions. Journal of the Robotics Society of Japan 18, 690–698 (2000) (in Japanese)

    Google Scholar 

  32. Saito, F., Fukuda, T., Arai, F.: Swing and locomotion control for two-link brachiation robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 719–724 (1993)

    Google Scholar 

  33. Saito, F., Fukuda, T., Arai, F.: Swing and locomotion control for a two-link brachiation robot. IEEE Control System Magazine 14(1), 5–12 (1994)

    Article  Google Scholar 

  34. Simons, E.L.: Primate Evolution: An Introduction to Man's Place in Nature. Macmillan, NY (1972)

    Google Scholar 

  35. Smith, R.: Open dynamics engine(ode) (2008). URL http://www.ode.org/

  36. Tsukagoshi, H., Hirose, S., Yoneda, K.: Maneuvering operations of the quadruped walking robot on the slope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 863–869 (1996)

    Google Scholar 

  37. Yoneda, H., Sekiyama, K., Hasegawa, Y., Fukuda, T.: Vertical ladder climbing motion with posture control for multi-locomotion robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3579–3584 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fukuda, T., Aoyama, T., Hasegawa, Y., Sekiyama, K. (2009). Multilocomotion Robot: Novel Concept, Mechanism, and Control of Bio-inspired Robot. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics