Skip to main content

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

Summary

Tissue Engineering is an interdisciplinary field that applies the principles of engineering and life sciences to develop biological substitutes with the purpose of restoring and regenerating damaged or injured tissues. This chapter provides an overview of the field of tissue engineering and outlines its potential to provide solutions to the field of regenerative medicine. It gives an overview of important aspects used in tissue engineering and discusses the use of stem cells, cytokines and growth factors, gene therapy, and materials used to create bioartificial scaffolds and tissue-engineered constructs. Present and future challenges in the clinical application of tissue-engineered products are discussed in the context of products used for skin, cartilage, bone, peripheral nerve, breast, tendon, and skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADSC:

Adipose-Derived Stem Cell

ACT:

Autologous Chondrocyte Transplantation

BMSC:

Bone Marrow Stem Cell

BMP-2 and BMP-7:

Bone Morphogenetic Protien-2 and 7

cDNA:

Complementary deoxyri-bonucleic acid

DNA:

Deoxyribonucleic acid

FGF:

Fibroblast Growth Factor

FGF-10 and FGF-2:

Fibroblast growth factor-10 and 2

FDA:

Food and Drug Administration

GAGs:

Glycosaminoglycans

GM-CSF:

Granulocyte-Macrophage Colony-Stimulating Factor

IGF-1:

Insulin-like Growth Factor-1

IL-1:

Interleukin-1

IL-6:

Interleukin-6

KGF:

Keratinocyte Growth Factor

MHC-I:

Major Histocompatibility Complex I

MSC:

Mesenchymal stem cell

μm:

Micrometer

rPTH:

Parathyroid Hormone-related peptide

PDGF:

Platelet-Derived Growth Factor

PEGDA:

Poly (ethylene glycol) diacrylate

PGA:

Poly (glycolic acid)

PLA:

Poly (lactic acid)

PLGA:

Poly (lactic-co-glycolide)

PCL:

Poly (ε-caprolactone)

SNT:

Somatic-Cell Nuclear Transfer

TGF-β:

Transforming Growth Factor-β

VEGF:

Vascular Endothelial Growth Factor

3D:

3-Dimensional

References

  1. Section 361 of the Public Health Services Act. Id. At 712.

    Google Scholar 

  2. Reparative Medicine: Growing Tissues and Organs. Symposium Report. National Institutes of Health Bioengineering Consortium (BECON), Natcher Conference Center, Bethesda, MD, June 2001. Available at http://www.becon1.nih.gov/becon_2001_final_report.pdf. Accessed November 21, 2007.

  3. Scientific Committee on Medicinal Products and Medical Devices. Opinion on the state of the art concerning tissue engineering adopted by the scientific committee of medicinal products and medical devices. October 1, 2001. http://ec.europa.eu/health/ph_risk/committees/scmp/ documents/out37_en.pdf

  4. (IUPAC) IUoPaAC Compendium of Chemical Terminology. Available at http://goldbook.iupac.org/ B00662.html. Accessed November 30, 2007

  5. Alden TD, Beres EJ, Laurent JS, et al. The use of bone morphogenetic protein gene therapy in craniofacial bone repair. J Craniofac Surg. 2000;11:24–30.

    Article  PubMed  CAS  Google Scholar 

  6. Almany L, Seliktar D. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials. 2005;26:2467–2477.

    Article  PubMed  CAS  Google Scholar 

  7. Amani H, Dougherty WR, Blome-Eberwein S. Use of transcyte and dermabrasion to treat burns reduces length of stay in burns of all size and etiology. Burns. 2006;32:828–832.

    Article  PubMed  Google Scholar 

  8. Amoh Y, Li L, Katsuoka K, et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005;102:5530–5534.

    Article  PubMed  CAS  Google Scholar 

  9. Andersson H, van den Berg A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip. 2004;4:98–103.

    Article  PubMed  CAS  Google Scholar 

  10. Andree C, Swain WF, Page C P, et al. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci U S A. 1994;91:12188–92.

    Article  PubMed  CAS  Google Scholar 

  11. Andree C, Voigt M, Wenger A, et al. Plasmid gene delivery to human keratinocytes through a fibrin-mediated trans-fection system. Tissue Eng. 2001;7:757–766.

    Article  PubMed  CAS  Google Scholar 

  12. Archibald SJ, Krarup C, Shefner J, et al. A collagen-based nerve guide conduit for peripheral nerve repair: an elec-trophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol. 1991;306:685–696.

    Article  PubMed  CAS  Google Scholar 

  13. Arosarena O. Tissue engineering. Curr Opin Otolaryngol Head Neck Surg. 2005;13:233–241.

    Article  PubMed  Google Scholar 

  14. Awad HA, Butler DL, Boivin GP, et al. Autologous mesen-chymal stem cell-mediated repair of tendon. Tissue Eng. 1999;5:267–277.

    Article  PubMed  CAS  Google Scholar 

  15. Awad HA, Butler DL, Harris MT, et al. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res. 2000;51:233–240.

    Article  PubMed  CAS  Google Scholar 

  16. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8:301–316.

    Article  PubMed  CAS  Google Scholar 

  17. Barrilleaux B, Phinney DG, Prockop DJ, et al. Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng. 2006;12:3007–3019.

    Article  PubMed  CAS  Google Scholar 

  18. Bjerknes M, Cheng H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2002;283:G767–777.

    PubMed  CAS  Google Scholar 

  19. Bjerknes M, Cheng H. Intestinal epithelial stem cells and progenitors. Methods Enzymol. 2006;419:337–383.

    Article  PubMed  CAS  Google Scholar 

  20. Blomme EA SY, Lin YC, Capen CC, Rosol TJ. Parathyroid hormone-related protein is a positive regulator of kerati-nocyte growth factor expression by normal dermal fibro-blasts. Mol Cell Endocrinol. 1999;(1–2):189–97.

    Google Scholar 

  21. Bonadio J, Smiley E, Patil P, et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999;5:753–759.

    Article  PubMed  CAS  Google Scholar 

  22. Borenstein JT, Weinberg EJ, Orrick BK, et al. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 2007;13:1837–1844.

    Article  PubMed  CAS  Google Scholar 

  23. Boxman I, Lowik C, Aarden L, et al. Modulation of IL-6 production and IL-1 activity by keratinocyte-fibroblast interaction. J Invest Dermatol. 1993;101:316–324.

    Article  PubMed  CAS  Google Scholar 

  24. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondro-cyte transplantation. N Engl J Med. 1994;331:889–895.

    Article  PubMed  CAS  Google Scholar 

  25. Brown S, Clarke I, Williams P. Bioceramics 14 (Key Engineering Materials, Vol. 218–220). Bioceramics 14, Proceedings of the 14th International Symposium on Ceramics in Medicine, Palm Springs, CA, 2002. Available at http://www.ttp.net/0-87849-889-3/toc.html. Accessed December 6, 2007.

  26. Callow AD. The vascular endothelial cell as a vehicle for gene therapy. J Vasc Surg. 1990;11:793–798.

    PubMed  CAS  Google Scholar 

  27. Calonder C, Matthew HW, Van Tassel PR. Adsorbed layers of oriented fibronectin: a strategy to control cell–surface interactions. J Biomed Mater Res A. 2005;75:316–323.

    PubMed  Google Scholar 

  28. Campbell KH, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–66.

    Article  PubMed  CAS  Google Scholar 

  29. Camporesi S. The context of embryonic development and its ethical relevance. Biotechnol J. 2007;2:1147–1153.

    Article  PubMed  CAS  Google Scholar 

  30. Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11:1198–1211.

    Article  PubMed  CAS  Google Scholar 

  31. Chen GQ, Wu Q. The application of polyhydroxyalkano-ates as tissue engineering materials. Biomaterials. 2005;26:6565–6578.

    Article  PubMed  CAS  Google Scholar 

  32. Chung C, Burdick JA. Engineering cartilage tissue. Chung C, Burdick JA. Adv Drgug Deliv Rev. 2008 Jan 14;60(2): 243–262. Epub 2007 Oct 5. Review.

    Google Scholar 

  33. Coleman SR. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg. 1995;19:421–425.

    Article  PubMed  CAS  Google Scholar 

  34. Coles BL, Angenieux B, Inoue T, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A. 2004;101:15772–15777.

    Article  PubMed  CAS  Google Scholar 

  35. Cooper G. The Cell: A Molecular Approach. 2nd ed. Sunderland, MA: Sinauer Associates Inc.;2000.

    Google Scholar 

  36. Couet F, Rajan N, Mantovani D. Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromol Biosci. 2007;7:701–718.

    Article  PubMed  CAS  Google Scholar 

  37. Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4:211–232.

    Article  PubMed  CAS  Google Scholar 

  38. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23:425–432.

    Article  PubMed  CAS  Google Scholar 

  39. Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature. 1994;372:263–266.

    Article  PubMed  CAS  Google Scholar 

  40. Day RM, Boccaccini AR, Shurey S, et al. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004;25:5857–5866.

    Article  PubMed  CAS  Google Scholar 

  41. de Kretser D. Totipotent, pluripotent or unipotent stem cells: a complex regulatory enigma and fascinating biology. J Law Med. 2007;15:212–218.

    Google Scholar 

  42. De Ugarte DA, Ashjian PH, Elbarbary A, et al. Future of fat as raw material for tissue regeneration. Ann Plast Surg. 2003;50:215–219.

    Article  Google Scholar 

  43. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843.

    Article  Google Scholar 

  44. Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A. 2002; 99:9864–9869.

    Article  PubMed  CAS  Google Scholar 

  45. Dunn AS, Campbell PG, Marra KG. The influence of polymer blend composition on the degradation of polymer/ hydroxyapatite biomaterials. J Mater Sci Mater Med. 2001;12:673–677.

    Article  PubMed  CAS  Google Scholar 

  46. Evans CH, Robbins PD. Progress toward the treatment of arthritis by gene therapy. Ann Med. 1995;27:543–546.

    Article  PubMed  CAS  Google Scholar 

  47. Evans GR, Brandt K, Katz S, et al. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002;23:841–848.

    Article  PubMed  CAS  Google Scholar 

  48. Fairchild PJ, Cartland S, Nolan KF, et al. Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol. 2004;25:465–470.

    Article  PubMed  CAS  Google Scholar 

  49. Fortier LA. Stem cells: classifications, controversies, and clinical applications. Vet Surg. 2005;34:415–423.

    Article  PubMed  Google Scholar 

  50. Francel PC, Smith KS, Stevens FA, et al. Regeneration of rat sciatic nerve across a LactoSorb bioresorbable conduit with interposed short-segment nerve grafts. J Neurosurg. 2003;99:549–554.

    Article  PubMed  Google Scholar 

  51. Franz G, Blaschek W. Cellulose. In: Dey P, ed. Carbohydrates, Vol 2. London, UK: Academic Press; 1990.

    Chapter  Google Scholar 

  52. Freed LE, Guilak F, Guo XE, et al. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng. 2006;12:3285–3305.

    Article  PubMed  CAS  Google Scholar 

  53. Frerich B, Kurtz-Hoffmann J, Lindemann N. Influence of growth hormone on maintenance of capillary-like structures in an in vitro model of stromal vascular tissue— results from morphometric analysis. Artif Organs. 2005;29:338–341.

    Article  PubMed  CAS  Google Scholar 

  54. Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials. 1994;15:208–212.

    Article  PubMed  CAS  Google Scholar 

  55. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55:1613–1629.

    Article  PubMed  CAS  Google Scholar 

  56. Gilbert S. Developmental Biology. 6th ed. Sunderland, MA: Sinauer Associates, Inc.; (2000).

    Google Scholar 

  57. Godley R, Starosvetsky D, Gotman I. Bonelike apatite formation on niobium metal treated in aqueous NaOH. J Mater Sci Mater Med. 2004;15:1073–1077.

    Article  PubMed  CAS  Google Scholar 

  58. Goessler UR, Hormann K, Riedel F. Tissue engineering with chondrocytes and function of the extracellular matrix (Review). Int J Mol Med. 2004;13:505–513.

    PubMed  CAS  Google Scholar 

  59. Goessler UR, Riedel K, Hormann K, et al. Perspectives of gene therapy in stem cell tissue engineering. Cells Tissues Organs. 2006;183:169–179.

    Article  PubMed  Google Scholar 

  60. Gomes ME, Ribeiro AS, Malafaya PB, et al. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials. 2001;22:883–889.

    Article  PubMed  CAS  Google Scholar 

  61. Greenspan A. The Challenge of Central Banking in a Democratic Society, December 5, 1996. http://www.federalreserve.gov/BORADDOCS/SPEECHES/19961205.htm

  62. Haastert K, Semmler N, Wesemann M, et al. Establishment of cocultures of osteoblasts, Schwann cells, and neurons towards a tissue-engineered approach for orofacial reconstruction. Cell Transplant. 2006;15:733–744.

    Article  PubMed  Google Scholar 

  63. Habraken WJ, Wolke JG, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–248.

    Article  PubMed  CAS  Google Scholar 

  64. Hadjantonakis AK, Papaioannou VE. Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases? Genome Biol. 2002;3:reviews1023.

    Google Scholar 

  65. Heidemann W, Jeschkeit S, Ruffieux K, et al. Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials. 2001;22:2371–2381.

    Article  PubMed  CAS  Google Scholar 

  66. Holder WD, Jr., Gruber HE, Moore AL, et al. Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat. J Biomed Mater Res. 1998;41:412–421.

    Article  PubMed  CAS  Google Scholar 

  67. Homicz MR, Watson D. Review of injectable materials for soft tissue augmentation. Facial Plast Surg. 2004;20:21–29.

    Article  PubMed  Google Scholar 

  68. Hottot A, Vessot S, Andrieu J. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products. PDA J Pharm Sci Technol. 2005;59:138–153.

    PubMed  CAS  Google Scholar 

  69. Hou Q, Grijpma DW, Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials. 2003;24:1937–1947.

    Article  PubMed  CAS  Google Scholar 

  70. Hutley LJ, Herington AC, Shurety W, et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab. 2001;281: E1037–E1044.

    PubMed  CAS  Google Scholar 

  71. Igarashi A, Okochi H, Bradham DM, et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993;4:637–645.

    PubMed  CAS  Google Scholar 

  72. Isogai N, Kusuhara H, Ikada Y, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 2006;12:691–703.

    Article  PubMed  CAS  Google Scholar 

  73. Izydorezyk M, Cui S, Wang Q. Polysaccharide gums: structures, functional properties and applications. In: Cui S, ed. Food Carbohydrates: Chemistry, Physical Properties and Applications. Boca Raton, FL: CRC Press; 2005.

    Google Scholar 

  74. Jarcho M, Kay JF, Gumaer KI, et al. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. J Bioeng. 1977;1:79–92.

    PubMed  CAS  Google Scholar 

  75. Jia H, Zhu G, Vugrinovich B, et al. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog. 2002;18:1027–1032.

    Article  PubMed  CAS  Google Scholar 

  76. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–49.

    Article  PubMed  CAS  Google Scholar 

  77. Jones JE, Nelson EA. Skin grafting for venous leg ulcers. Cochrane Database Syst Rev. 2007;CD001737.

    Google Scholar 

  78. Juncosa-Melvin N, Matlin KS, Holdcraft RW, et al. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007;13:1219–1226.

    Article  PubMed  CAS  Google Scholar 

  79. Katz AJ, Llull R, Hedrick MH, et al. Emerging approaches to the tissue engineering of fat. Clin Plast Surg. 1999;26:587–603, viii.

    PubMed  CAS  Google Scholar 

  80. Keshaw H, Forbes A Day RM. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials. 2005;26:4171–4179.

    Article  PubMed  CAS  Google Scholar 

  81. Kirton JP, Wilkinson FL, Canfield AE, et al. Dexamethasone downregulates calcification-inhibitor molecules and accelerates osteogenic differentiation of vascular peri-cytes: implications for vascular calcification. Circ Res. 2006;98:1264–1272.

    Article  PubMed  CAS  Google Scholar 

  82. Kobayashi S, Fujikawa S, Ohmae M. Enzymatic synthesis of chondroitin and its derivatives catalyzed by hyaluroni-dase. J Am Chem Soc. 2003;125:14357–14369.

    Article  PubMed  CAS  Google Scholar 

  83. Lai W, Garino J, Flaitz C, et al. Excretion of resorption products from bioactive glass implanted in rabbit muscle. J Biomed Mater Res A. 2005;75:398–407.

    PubMed  Google Scholar 

  84. Langer R, Vacanti J Tissue Engineering. Science. 1993;260:902.

    Article  Google Scholar 

  85. Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12:2093–2104.

    Article  PubMed  CAS  Google Scholar 

  86. Lazarous DF, Scheinowitz M, Shou M, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation. 1995;91:145–153.

    Article  PubMed  CAS  Google Scholar 

  87. LeGeros R, JP JL. Calcium Phosphate Bioceramics: Past, Present and Future (Key Engineering Materials Vols. 240– 242). Bioceramics 15. Proceedings of the 15th International Symposium on Ceramics in Medicine, Sydney, 2002. Available at http://www.scientific.net/0878499113/3/. Accessed December 6, 2007

  88. Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med. 2003;9:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  89. Li P, Ohtsuki C, Kokubo T, et al. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28:7–15.

    Article  PubMed  CAS  Google Scholar 

  90. Liu Z, Martin LJ. Pluripotent fates and tissue regenerative potential of adult olfactory bulb neural stem and progenitor cells. J Neurotrauma. 2004;21:1479–1499.

    Article  PubMed  Google Scholar 

  91. Lu HH, Tang A, Oh SC, et al. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials. 2005;26:6323–6334.

    Article  PubMed  CAS  Google Scholar 

  92. Lutolf MP, Weber FE, Schmoekel HG, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol. 2003;21:513–518.

    Article  PubMed  CAS  Google Scholar 

  93. Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003; 100:5413–5418.

    Article  PubMed  CAS  Google Scholar 

  94. Maas-Szabowski N, Shimotoyodome A, Fusenig NE. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci. 1999;112(pt 12):1843–1853.

    PubMed  Google Scholar 

  95. Mackinnon SE, Kelly L, Hunter DA. Comparison of regeneration across a vascularized versus conventional nerve graft: case report. Microsurgery. 1988;9:226–234.

    Article  PubMed  CAS  Google Scholar 

  96. Majors AK, Boehm CA, Nitto H, et al. Characterization of human bone marrow stromal cells with respect to osteo-blastic differentiation. J Orthop Res. 1997;15:546–557.

    Article  PubMed  CAS  Google Scholar 

  97. Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4:999–1030.

    Article  PubMed  CAS  Google Scholar 

  98. Marchese C, Felici A, Visco V, et al. Fibroblast growth factor 10 induces proliferation and differentiation of human primary cultured keratinocytes. J Invest Dermatol. 2001;116:623–628.

    Article  PubMed  CAS  Google Scholar 

  99. Marlovits S, Zeller P, Singer P, et al. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006;57:24–31.

    Article  PubMed  Google Scholar 

  100. Marston WA. Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic non-healing diabetic foot ulcer. Expert Rev Med Dev. 2004;1:21–31.

    Article  CAS  Google Scholar 

  101. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphoge-netic protein-2 (INFUSE( (R) ) Bone Graft). Int Orthop. 2007;31:729–734.

    Article  PubMed  Google Scholar 

  102. Meyer U, Joos U, Wiesmann H P. Biological and biophysical principles in extracorporal bone tissue engineering. Part III. Int J Oral Maxillofac Surg. 2004;33:635–641.

    Article  PubMed  CAS  Google Scholar 

  103. Mimura T, Dezawa M, Kanno H, et al. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J Neurosurg. 2004;101:806–812.

    Article  PubMed  Google Scholar 

  104. Miyazaki T, Kim HM, Kokubo T, et al. Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal. J Mater Sci Mater Med. 2002;13:651–655.

    Article  PubMed  CAS  Google Scholar 

  105. Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg. 2006;118:121S–128S.

    Article  PubMed  CAS  Google Scholar 

  106. Mulligan RC. The basic science of gene therapy. Science. 1993;260:926–932.

    Article  PubMed  CAS  Google Scholar 

  107. Muraca M, Galbiati G, Realdi G, et al. Regenerative medicine: an insight. Transplant Proc. 2007;39:1995–1998.

    Article  PubMed  CAS  Google Scholar 

  108. Norrby K. Angiogenesis: new aspects relating to its initiation and control. Apmis. 1997;105:417–437.

    Article  PubMed  CAS  Google Scholar 

  109. Ohgushi H and Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48:913–927.

    Article  PubMed  CAS  Google Scholar 

  110. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473–2476.

    Article  PubMed  CAS  Google Scholar 

  111. Pandit AS, Feldman DS, Caulfield J, et al. Stimulation of angiogenesis by FGF-1 delivered through a modified fibrin scaffold. Growth Factors. 1998;15:113–23.

    Article  PubMed  CAS  Google Scholar 

  112. Panossian A, Ashiku S, Kirchhoff CH, et al. Effects of cell concentration and growth period on articular and ear chondrocyte transplants for tissue engineering. Plast Reconstr Surg. 2001;108:392–402.

    Article  PubMed  CAS  Google Scholar 

  113. Park SH, Park SR, Chung SI, et al. Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs. 2005;29:838–845.

    Article  PubMed  CAS  Google Scholar 

  114. Patrick CW. Breast tissue engineering. Annu Rev Biomed Eng. 2004;6:109–30.

    Article  PubMed  CAS  Google Scholar 

  115. Patrick C W, Jr. Tissue engineering strategies for adipose tissue repair. Anat Rec. 2001;263:361–366.

    Article  PubMed  CAS  Google Scholar 

  116. Patrick CW Jr, Zheng B, Johnston C, et al. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 2002;8:283–293.

    Article  PubMed  CAS  Google Scholar 

  117. Perka C, Schultz O, Lindenhayn K, et al. Joint cartilage repair with transplantation of embryonic chondrocytes embedded in collagen-fibrin matrices. Clin Exp Rheumatol. 2000;18:13–22.

    PubMed  CAS  Google Scholar 

  118. Peter SJ, Yaszemski MJ, Suggs LJ, et al. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. J Biomater Sci Polym Ed. 1997;8:893–904.

    Article  PubMed  CAS  Google Scholar 

  119. Pfister LA, Papaloizos M, Merkle HP, et al. Nerve conduits and growth factor delivery in peripheral nerve repair. J Peripher Nerv Syst. 2007;12:65–82.

    Article  PubMed  CAS  Google Scholar 

  120. Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109:656–663.

    Article  PubMed  Google Scholar 

  121. Pompe T, Markowski M, Werner C. Modulated fibronec-tin anchorage at polymer substrates controls angiogen-esis. Tissue Eng. 2004;10:841–848.

    Article  PubMed  CAS  Google Scholar 

  122. Price RD, Das-Gupta V, Leigh IM, et al. A comparison of tissue-engineered hyaluronic acid dermal matrices in a human wound model. Tissue Eng. 2006;12:2985–2995.

    Article  PubMed  CAS  Google Scholar 

  123. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129:118–129.

    Article  PubMed  Google Scholar 

  124. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001;938:231–233; discussion 233–235.

    Article  PubMed  CAS  Google Scholar 

  125. Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431.

    Article  PubMed  CAS  Google Scholar 

  126. Rich J, Jaakkola T, Tirri T, et al. In vitro evaluation of poly(epsilon-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials. 2002;23:2143–2150.

    Article  PubMed  CAS  Google Scholar 

  127. Safford KM, Safford SD, Gimble JM, et al. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol. 2004;187:319–328.

    Article  PubMed  CAS  Google Scholar 

  128. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–765.

    Article  PubMed  CAS  Google Scholar 

  129. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.

    Article  PubMed  CAS  Google Scholar 

  130. Schmidt D, Asmis LM, Odermatt B, et al. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg. 2006;82:1465–1471; discussion 1471.

    Article  PubMed  Google Scholar 

  131. Seaberg RM, Smukler SR, Kieffer TJ, et al. Clonal identi-fication of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004;22:1115–1124.

    Article  PubMed  CAS  Google Scholar 

  132. Sharma B, Williams CG, Kim TK, et al. Designing zonal organization into tissue-engineered cartilage. Tissue Eng. 2007;13:405–414.

    Article  PubMed  CAS  Google Scholar 

  133. Shearn JT, Juncosa-Melvin N, Boivin GP, et al. Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation. J Biomech Eng. 2007;129:848.

    Article  PubMed  Google Scholar 

  134. Sievert KD, Amend B, Stenzl A. Tissue engineering for the lower urinary tract: a review of a state of the art approach. Eur Urol. 2007;52:1580–1589.

    Article  PubMed  Google Scholar 

  135. Sinanan AC, Hunt N P, Lewis MP. Human adult craniofa-cial muscle-derived cells: neural-cell adhesion-molecule (NCAM; CD56)-expressing cells appear to contain multipotential stem cells. Biotechnol Appl Biochem. 2004;40:25–34.

    Article  PubMed  CAS  Google Scholar 

  136. Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteo-chondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage. 2005;13:297–309.

    Article  PubMed  Google Scholar 

  137. Stark HJ, Boehnke K, Mirancea N, et al. Epidermal homeostasis in long-term scaffold-enforced skin equivalents. J Investig Dermatol Symp Proc. 2006;11:93–105.

    Article  PubMed  CAS  Google Scholar 

  138. Stemple DL, Anderson DJ. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992;71:973–985.

    Article  PubMed  CAS  Google Scholar 

  139. Tabata Y, Miyao M, Inamoto T, et al. De novo formation of adipose tissue by controlled release of basic fibro-blast growth factor. Tissue Eng. 2000;6:279–289.

    Article  PubMed  CAS  Google Scholar 

  140. Tanne JH. US gene therapy trial is to restart, despite patient's death. BMJ. 2007;335:1172–1173.

    Article  PubMed  Google Scholar 

  141. Thompson ID, Hench LL. Mechanical properties of bio-active glasses, glass-ceramics and composites. Proc Inst Mech Eng [H]. 1998;212:127–136.

    Article  CAS  Google Scholar 

  142. Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun. 2006;341:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  143. Tognana E, Borrione A, De Luca C, et al. Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs. 2007;186:97–103.

    Article  PubMed  CAS  Google Scholar 

  144. U.S. Department of Health and Human Services FaDA. Guidance for Industry, Public Health Issues Posed by the Use of Non-Primate Xenografts in Humans. 1999. Available at http://www.fda.gov/cber/gdlns/xenoprim. pdf. Accessed November 26, 2007

  145. U.S. Department of Health and Human Services FaDA. Human cells, tissues and cellular and tissue-based products; establishment registration and listing — final rule. Federal Register. 2004;66:5447.

    Google Scholar 

  146. U.S. Department of Health and Human Services FaDA. Eligibility determination for donors of human cells, tissues and cellular and tissue-based products — final rule. Federal Register. 2004;69:29785.

    Google Scholar 

  147. U.S. Department of Health and Human Services FaDA. Current good tissue practice for human cell, tissue and cellular and tissue-based product establishments; inspection and enforcement — -final rule. Federal Register. 2004;69:686811.

    Google Scholar 

  148. U.S. Department of Health and Human Services FaDA, Office of the Commissioner, Office of Combination Products and Center for Biologics Evaluation and Research. (2006) Guidance for Industry and FDA Staff: Minimal Manipulation of Structural Tissue Jurisdictional Update. Available at http://www.fda.gov/cber/gdlns/ minimaljur.pdf. Accessed November 21, 2007

  149. Uchida M, Kim HM, Kokubo T, et al. Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment. J Biomed Mater Res. 2002;60:277–282.

    Article  PubMed  CAS  Google Scholar 

  150. Vaccaro AR, Patel T, Fischgrund J, et al. A pilot safety and efficacy study of OP-1 putty (rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J. 2003;12:495–500.

    Article  PubMed  Google Scholar 

  151. Vaz CM, Fossen M, van Tuil RF, et al. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. J Biomed Mater Res A. 2003;65:60–70.

    Article  PubMed  CAS  Google Scholar 

  152. Wagers AJ, Weissman IL Plasticity of adult stem cells. Cell. 2004;116:639–648.

    Article  PubMed  CAS  Google Scholar 

  153. Wakitani S, Takaoka K, Hattori T, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford). 2003;42:162–165.

    Article  CAS  Google Scholar 

  154. Walgenbach KJ, Voigt M, Riabikhin AW, et al. Tissue engineering in plastic reconstructive surgery. Anat Rec. 2001;263:372–378.

    Article  PubMed  CAS  Google Scholar 

  155. Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 2007;13:1291–1298.

    Article  PubMed  CAS  Google Scholar 

  156. Walton RL, Beahm EK, Wu L. De novo adipose formation in a vascularized engineered construct. Microsurgery. 2004;24:378–384.

    Article  PubMed  Google Scholar 

  157. Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26:7082–7094.

    Article  PubMed  CAS  Google Scholar 

  158. Wechselberger G, Russell RC, Neumeister MW, et al. Successful transplantation of three tissue-engineered cell types using capsule induction technique and fibrin glue as a delivery vehicle. Plast Reconstr Surg. 2002;110:123–129.

    Article  PubMed  Google Scholar 

  159. Werner S, Smola H. Paracrine regulation of keratino-cyte proliferation and differentiation. Trends Cell Biol. 2001;11:143–146.

    Article  PubMed  CAS  Google Scholar 

  160. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 2007;127:998–1008.

    Article  PubMed  CAS  Google Scholar 

  161. Whitworth IH, Brown RA, Dore C, et al. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J Hand Surg [Br]. 1995;20:429–436.

    Article  CAS  Google Scholar 

  162. Widner B, Behr R, Von Dollen S, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol. 2005;71:3747–3752.

    Article  PubMed  CAS  Google Scholar 

  163. Wislet-Gendebien S, Hans G, Leprince P, et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005;23:392–402.

    Article  PubMed  CAS  Google Scholar 

  164. Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85:635–678.

    Article  PubMed  CAS  Google Scholar 

  165. Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. Br J Dermatol. 2007;156:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  166. Ya n W, George S, Fotadar U, et al. Tissue engineering of skeletal muscle. Tissue Eng. 13:2781–2790.

    Google Scholar 

  167. Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–248.

    Article  PubMed  CAS  Google Scholar 

  168. Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–1900.

    Article  PubMed  CAS  Google Scholar 

  169. Yost MJ, Simpson D, Wrona K, et al. Design and construction of a uniaxial cell stretcher. Am J Physiol Heart Circ Physiol. 2000;279:H3124–130.

    PubMed  CAS  Google Scholar 

  170. Young HE. Existence of reserve quiescent stem cells in adults, from amphibians to humans. Curr Top Microbiol Immunol. 2004;280:71–109.

    Article  PubMed  CAS  Google Scholar 

  171. Young RG, Butler DL, Weber W, et al. Use of mesenchy-mal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res. 1998;16:406–413.

    Article  PubMed  CAS  Google Scholar 

  172. Yuksel E, Weinfeld AB, Cleek R, et al. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/ PEG microspheres in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg. 2000;105:1721–1729.

    Article  PubMed  CAS  Google Scholar 

  173. Zhao K, Deng Y, Chun Chen J, et al. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials. 2000;24:1041–1045.

    Article  Google Scholar 

  174. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pharaon, M.R., Scholz, T., Evans, G.R.D. (2010). Tissue Engineering. In: Siemionow, M.Z., Eisenmann-Klein, M. (eds) Plastic and Reconstructive Surgery. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/978-1-84882-513-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-513-0_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-512-3

  • Online ISBN: 978-1-84882-513-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics