Skip to main content

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1428 Accesses

Abstract

Microwave characterization of bulk, thin and thick film ferroelectrics is considered in this chapter. Both single crystals and ceramics are discussed. The resonant techniques include disk, Courtney and composite resonator methods for characterization of the bulk ferroelectrics. The open resonator and split post dielectric resonator methods are considered for thick films. Resonator techniques for on-wafer characterization of the thin films and varactors include: microprobe resonator, transmission line resonator, and the near field scanning microscope. The broadband techniques include transmission/reflection method and methods based on coplanar lines and coupled microstrip lines. The methods for the measurement of the nonlinearities and tuning speeds also are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agilent 8510C network analyzer data sheet. Agilent Technologies, Inc. http://cp.literature.agilent.com/litweb/pdf/5091-8484E.pdf

    Google Scholar 

  • Barker-Jarvis J, Vanzura E, Kissick W (1990) Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans Microw Theory and Tech 38:1096–1103

    Article  Google Scholar 

  • Boughriet A, Legrand C, Chapoton A (1997) Noniterative stable transmission/reflection method for low-loss material complex permittivity determination. IEEE Trans Microw Theory and Tech 45:52–57

    Article  Google Scholar 

  • Buslov O, Keys V, Kozyrev A et al. (2003) Procedure of measurement of ferroelectric film parameters using open resonator method. Microwave and Telecommunication Technology CriMiCo2003:683–684

    Google Scholar 

  • Carlsson E, Gevorgian S (1997) Effect of enhanced current crowding in a CPW with a thin ferroelectric film. Electron Lett 33:145–146

    Article  Google Scholar 

  • Champlin K, Glover G (1966) ”Gap effect” in measurement of large permittivities. IEEE Trans Microw Theory and Tech MTT-14:397–398

    Article  Google Scholar 

  • Cho Y, Kazuta S, Matsuura K (1999) Scanning nonlinear dielectric microscopy with nanometer resolution. Appl Phys Lett 75:2833–2835

    Article  ADS  CAS  Google Scholar 

  • Cho Y, Kirihara A, Saeki T (1996) Scanning nonlinear dielectric microscope. Rev Sci Instrum 67:2297–2303

    Article  ADS  CAS  Google Scholar 

  • Courtney W (1970) Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans Microw Theory Tech 14:476–485

    Article  Google Scholar 

  • Deleniv A, Abadei S, Gevorgian S (2003a) Microwave Characterization of Thin Ferroelectric Films. Proc EuMC’2003:483–486

    Google Scholar 

  • Deleniv A, Gevorgian S (2005) Open resonator technique for measuring multilayered dielectric plates. IEEE Trans Microw Theory Tech 53:2908–2916

    Article  Google Scholar 

  • Deleniv A, Hu T, Jantunen H et al. (2003b) Tunable ferroelectric components in LTCC technology. Dig IEEE IMS’2003:1997–2000

    Google Scholar 

  • Deleniv A, Rundqvist P, Vorobiev A et al. (2007) Experimental characterization of the 3rd order nonlinearities in thin film parallel-plate ferroelectric varactors. Dig IEEE IMS’2007:683–686

    Google Scholar 

  • Deleniv A, Vorobiev A, Gevorgian S (2008) On-wafer characterization of varactor using resonating microprobes. IEEE Trans Micr Theory Tech 56: 1105–1111

    Article  Google Scholar 

  • Engen G, Hoer C (1979) Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer. IEEE Trans Micr Theory Tech MTT-27:987–993

    Article  Google Scholar 

  • Findikoglu A, Camassa R, Lythe G et al. (2002) Dielectric nonlinearity and stochastic effects in strontium titanate. Appl Phys Lett 80:3391–3393

    Article  ADS  CAS  Google Scholar 

  • Galt D, Price J, Beall J et al. (1995) Ferroelectric thin film characterization using superconducting microstrip resonators. IEEE Trans Appl Supercond 5:2575–2578

    Article  Google Scholar 

  • Gevorgian S, Carlsson E, Wikborg E et al. (1998) Tunable microwave devices on bulk and thin ferroelectrics. Integr Ferroelectr 22:245–257

    Article  CAS  Google Scholar 

  • Gevorgian S, Martinsson T, Linnér P et al. (1996) CAD Models for Multilayered Substrate Interdigital Capacitors, IEEE Trans Microw Theory Tech 44:896–904

    Article  Google Scholar 

  • Ginzton E (1957) Microwave measurements. McGraw-Hill Book Company

    Google Scholar 

  • Grigas J (1996) Microwave dielectric spectroscopy of ferroelectrics and related materials. Ferroelectricity and Related Phenomena, vol.9. Gordon and Breach

    Google Scholar 

  • Hakki B, Coleman P (1960) Adielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans Micr Theory Tech 8:402–410

    Article  Google Scholar 

  • Harrington R (1961) Time-Harmonic Electromagnetic Fields. McGraw-Hill Book Company

    Google Scholar 

  • Jones R (1976) Precise dielectric measurements at 35 GHz using an open microwave resonator. Proc IEE 123:285–290

    CAS  Google Scholar 

  • Kaifez D, Chebolu S, Abdul-Gaffoor M et al. (1999) Uncertainty analysis of the transmission type measurement of Q-factor. IEEE Trans Micr Theory Tech 47:367–371

    Article  Google Scholar 

  • Kobayashi Y, Katoh M (1985) Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans Micr Theory Tech MTT-33:586–592

    Article  Google Scholar 

  • Kogelnik H, Li T (1966) Laser beams and resonators. Proc IEEE 54:1312–1329

    Article  Google Scholar 

  • Komiyama B, Kiyokawa M, Matsui T (1991) Open resonator for precision dielectric measurements in the 100 GHz band. IEEE Trans Mic Theory Tech 39:1792–1796

    Article  ADS  Google Scholar 

  • Kozyrev A, Ivanov A, Samoilova T et al. (2000) Nonlinear response and power handling capability of ferroelectric Ba x Sr 1−x TiO 3 film capacitors and tunable microwave devices. Journal of Appl Phys 88:5334–5342

    Article  ADS  CAS  Google Scholar 

  • Kozyrev A, Soldatenkov O, Ivanov A (1998) Switching time of planar ferroelectric capacitors using strontium titanate and barium strontium titanate films. Tech Phys Lett 24:755–757

    Article  ADS  CAS  Google Scholar 

  • Kozyrev A, Soldatenkov O, Samoilova T et al. (1998b) Response time and power handling capability of tunable microwave devices ferroelectric films. Integr Ferroelectrics 22:329–340

    Article  CAS  Google Scholar 

  • Krupka J (2004) Complex permittivity measurements with split-post dielectric resonator. Workshop on the broadband characterization of dielectric substrates. In IEEE MTT-S Int. Microwave Symp. Dig., Forth Worth, USA.

    Google Scholar 

  • Krupka J, Gregory A, Rochard O et al. (2001) Uncertainty of Complex Permittivity Measurements by Split-Post Dielectric Resonator Technique. Journal of the European Ceramic Society 21: 2673–2676

    Article  CAS  Google Scholar 

  • Krupka J, Huang W-T, Tung M-J (2006) Complex permittivity measurements of thin ferroelectric films employing split post dielectric resonator. Ferroelectrics 335:89–94

    Article  CAS  Google Scholar 

  • Krupka J, Zychovicz T, Bovtun V et al. (2006) Complex permittivity measurements of ferroelectrics employing composite dielectric resonator technique. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control 53:1883–1888

    Article  Google Scholar 

  • Lue H, Tseng T (2001) Application of on-wafer TRL calibration on the measurement of microwave properties of BaSrTiO thin films. IEEE Trans Ultrasonics, Ferroelectrics Frequency Control 48:1640–1647

    Article  CAS  Google Scholar 

  • Ma Z, Becker A, Polakos P et al. (1998) RF measurement technique for characterizing thin dielectric films. IEEE Trans Electron Devices 45:1811–1816

    Article  ADS  CAS  Google Scholar 

  • Nicolson A, Ross G (1970) Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrumentation Measurement 19:377–382

    Article  Google Scholar 

  • Qi Yi, Anlage S M, Zheng H et al. (2007) Local dielectric measurements of BaTiO 3 -CoFe 2 O 4 nano-composites through microwave microscopy. Journal of Materials Research 22:1193–1199

    Article  ADS  Google Scholar 

  • Rubin D (1990) De-embedding mm-wave MICs with TRL. Microwave Journal 33:141–150

    Google Scholar 

  • Rumsey V (1954) The reaction concept in electromagnetic theory. Phys Rev Ser.2 94:1483–1491

    MATH  MathSciNet  Google Scholar 

  • Rundqvist P, Vorobiev A, Gevorgian S et al. (2004) Non-Destructive Microwave Characterisation of Ferroelectric Films on Conductive Substrates. Integrated Ferroelectrics 60:1–19

    Article  CAS  Google Scholar 

  • Steinhauer D, Vlahacos C, Wellstood F et al. (2000) Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope. Rev Scientific Instruments 71:2751–2758

    Article  ADS  CAS  Google Scholar 

  • Sucher M, Fox J (1963) Handbook of Microwave Measurements II. Polytechnic Inst. Of Brooklyn, Brooklyn, New York

    Google Scholar 

  • Vendik O, Kollberg E, Gevorgian S et al. (1995) 1 GHz tunable resonator on bulk single crystal SrTiO 3, plated with YBa 2 Cu 3 O 7−x films. El Lett 31:654–656

    Article  ADS  CAS  Google Scholar 

  • Vorobiev A, Berge J, Gevorgian S (2007) Thin film Ba 0.25 Sr 0.75 TiO 3 voltage tunable capacitors on fused silica substrates for applications in microwave microelectronics. Thin Solid Films 515:6606–6610

    Article  ADS  CAS  Google Scholar 

  • Weir W (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEE, l.62:33–36

    Article  Google Scholar 

  • Yu P, Cullen A (1982) Measurement of permittivity by means of an open resonator. I. Theoretical. Proc R Soc Lond A.380:49–71

    ADS  Google Scholar 

  • Zhu X, Chen D-Y, Jin Z et al. (2005) Characterization of thin film BST tunable capacitors using a simple two port measurement technique. Dig IEEE IMS’2005:611–614

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Deleniv, A., Gevorgian, S. (2009). Measurements of the Dielectric Properties. In: Ferroelectrics in Microwave Devices, Circuits and Systems. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-507-9_8

Download citation

Publish with us

Policies and ethics