Skip to main content

Sedation and Analgesia

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease

Abstract

The major goals for postoperative sedation and analgesia in infants, undergoing cardiothoracic surgery are to alleviate pain and to aid the transition of patients from the intensive care unit to home. The type of agents used for pediatric sedation varies with the medical needs of the patients. For postoperative pediatric patients, children need to be comfortable and nonagitated. Ideal sedative analgesic agents should have a rapid onset and offset of action, and be nontoxic, noncumulative, nonaddictive, and have minimal interactive effects with other drugs. In addition, ideal sedatives should provide the patient with cardiorespiratory stability and be cost effective. Historically, intravenous midazolam, lorazepam, and opioids were the mainstay sedative agents used in pediatrics. However, respiratory depression, tolerance, and withdrawal syndromes frequently complicate their use. More recently, the use of alpha-2 agonists, the administration of intravenous opioids, and the intraoperative placement of neuroaxial opioids have been used for postoperative sedation and analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tobias JD. Dexmedetomidine: Applications in pediatric Critical Care and pediatric Anesthesiology. Pediatr Crit Care Med. 2007;8:115–131.

    Article  PubMed  Google Scholar 

  2. Chrysostomou C, Di Filippo S, Manrique AM, et al. Use of dexmedetomidine in children after cardiac and thoracic surgery. Pediatr Crit Care med. 2006;7:126–131.

    Article  PubMed  Google Scholar 

  3. Koroglu A, Teksan H, Sagir O, et al. A comparison of the sedative, hemodynamic and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging. Anesth Analg. 2006;103:63–67.

    Article  PubMed  CAS  Google Scholar 

  4. Mason KP, Zgleszewski SE, Dearden JL, et al. Dexmedetomidine for pediatric sedation for computed tomography imaging studies. Anesth Analg. 2006;103:57–62.

    Article  PubMed  CAS  Google Scholar 

  5. Khan ZP, Ferguson CN, Jones RM. Alpha-2 and imidazoline receptor agonists: their pharmacology and therapeutic role. Anesthesia. 1999;54:146–165.

    Article  CAS  Google Scholar 

  6. Dyck JB, Shafer SL. Dexmedetomidine pharmacokinetics and pharmacodynamics. Anesth Pharm Rev. 1993;1:238–245.

    CAS  Google Scholar 

  7. Petroz GC, Sikich N, James M, et al. A phase I, 2-center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006;105:1098–1110.

    Article  PubMed  CAS  Google Scholar 

  8. Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg. 2002;95:1052–1059.

    PubMed  CAS  Google Scholar 

  9. Karlsson BR, Forsman M, Roald OK, et al. Effect of dexmedetomidine, a selective and potent α2-agonist, on cerebral blood flow and oxygen consumption during halothane anesthesia in dogs. Anesth Analg. 1990;71:125–129.

    Article  PubMed  CAS  Google Scholar 

  10. Vartiainen J, MacDonald E, Urtri A, et al. Dexmedetomidine-induced ocular hypotension in rabbits with normal or elevated intracranial presure. Invest Ophthalmol Vis Sci. 1992;33:2019–2023.

    PubMed  CAS  Google Scholar 

  11. Doufas AG, Lin CM, Suleman MI, et al. Dexmedetomidine and meperidine actively reduce the shivering threshold in humans. Stroke. 2003;34:1218–1223.

    Article  PubMed  CAS  Google Scholar 

  12. Ebert T, Hall J, Barney J, et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–394.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu YW, Cortinez LI, Robertson KM, et al. Dexmedetomidine pharmacokynamics: Crossover comparison of the respiratory effects of dexmedetomidine and remifentannil in healthy volunteers. Anesthesiology. 2004;101:1066–1076.

    Article  PubMed  CAS  Google Scholar 

  14. Belleville JP, Ward DS, Bloor BC, et al. Effects of intravenous dexmedetomidine in humans: I Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77:1125–1133.

    Article  PubMed  CAS  Google Scholar 

  15. Stoelting RK. Pharmacology and Physiology in Anesthetic practice. 3rd ed. Philadelphia: Lippincott–Raven; 1999.

    Google Scholar 

  16. Miller RD. Miller’s Anesthesia. 6th ed. Philadelphia: Elsevier Churchill Livingstone; 2005.

    Google Scholar 

  17. Barash PG, Cullen BF, Stoelting RK, et al. Clinical Anesthesia, 3rd ed. Philadelphia: Lippincott-Raven, 1997.

    Google Scholar 

  18. Morgan GE Jr, Mikhail MS, Murray MJ. Clinical Anesthesiology, 3rd ed. New York: Lange Medical Books/McGraw-Hill, Medical Pub Div, 2002.

    Google Scholar 

  19. Bromage PR, Shibata HR, Willoughby HW. Influence of prolonged epidural blockade on blood sugar and cortisol responses to operations upon the upper part of the abdomen and thorax. Surg Gynecol Obstet. 1971;132:1051–1056.

    PubMed  CAS  Google Scholar 

  20. Salomaki TE, Leppaluoto J, Laitinen JO. Epidural vs. intravenous fentanyl for reducing hormonal, metabolic, and physiologic responses after thoracotomy. Anesthesiology. 1993;79:672–679.

    Article  PubMed  CAS  Google Scholar 

  21. Marianeschi SM, Seddio F, McElhinney DB. Fast-track congenital heart operations: A less invasive technique and early extubation. Ann Thorac Surg. 2000;69:872–876.

    Article  PubMed  CAS  Google Scholar 

  22. Vricella LA, Dearani JA, Gundry SR. Ultra-fast track in elective congenital heart surgery. Ann Thorac Surg. 2001;69:865–871.

    Article  Google Scholar 

  23. Burrows FA, Taylor RH, Hillier SC. Early extubation of the trachea after repair of secundum-type atrial septal defects in children. Can J Anaesth. 1992;39:1041–1044.

    Article  PubMed  CAS  Google Scholar 

  24. Turley K, Tyndall Turley K, et al. Radical outcome method. A new approach to critical pathways in congenital heart disease. Circulation. 1995;92:II245–II249.

    Article  PubMed  CAS  Google Scholar 

  25. Laussen PC, Reid RW, Stene RA. Tracheal extubation of children in the operating room after atrial septal defect repair as part of a practice guideline. Anesth Analg. 1996;82:988–993.

    PubMed  CAS  Google Scholar 

  26. Hammer GB, Ngo K, Macario A. A retrospective examination of regional plus general anesthesia in children undergoing open heart surgery. Anesth Analg. 2000;90:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  27. Peterson KL, DeCampli WM, Pike NA, et al. Regional anesthesia in pediatric cardiac surgery: Report of 220 cases. Anesth Analg. 2000;90:1014–1019.

    Article  PubMed  CAS  Google Scholar 

  28. Penny DJ, Reddington AN. Doppler echocardiographic evaluation of pulmonary blood flow after the Fontan operation: The role of the lungs. Br Heart J. 1991;66:372–374.

    Article  PubMed  CAS  Google Scholar 

  29. Rosen KR, Rosen DA. Caudal epidural morphine for control of pain following open heart surgery in children. Anesthesiology. 1989;70:418–421.

    Article  PubMed  CAS  Google Scholar 

  30. Weissman C. The metabolic response to stress: An overview and update. Anesthesiology. 1990;73:308–327.

    Article  PubMed  CAS  Google Scholar 

  31. Kehlet H. Surgical stress: The role of pain and analgesia. Br J Anaesth. 1989;63:189–195.

    Article  PubMed  CAS  Google Scholar 

  32. Anand KJS, Hansen DD, Hickey PR. Hormonal-metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology. 1990;73:661–670.

    Article  PubMed  CAS  Google Scholar 

  33. Rosen DA, Rosen KR, Matheny JM. Maintenance of T3 levels in children undergoing cardiac surgery. Anesthesiology. 1997;87:A1069.

    Article  Google Scholar 

  34. Gruber EM, Laussen PC, Casta A. Stress response in infants undergoing cardiac surgery: A randomized study of fentanyl bolus, fentanyl infusion, and fentanyl-midazolam infusion. Anesth Analg. 2001;92:882–890.

    Article  PubMed  CAS  Google Scholar 

  35. Wolf AR, Eyres RL, Laussen PC. Effect of extradural analgesia on stress responses to abdominal surgery in infants. Br J Anaesth. 1993;70:654–660.

    Article  PubMed  CAS  Google Scholar 

  36. Fenton KN, Heinemann MK, Hickey PR. Inhibition of the fetal stress response improves cardiac output and gas exchange after fetal cardiac bypass. J Thorac Cardiovasc Surg. 1994;107:1416–1422.

    PubMed  CAS  Google Scholar 

  37. Shayevitz JR, Merkel S, O’Kelly SW. Lumbar epidural morphine infusions for children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10:217–224.

    Article  PubMed  CAS  Google Scholar 

  38. Wolf AF, Hughes D, Hobbs AJ. Combined morphine-bupivacaine caudals for reconstructive penile surgery in children: Systemic absorption of morphine and post-operative analgesia. Anaesth Intensive Care. 1991;19:17–21.

    PubMed  CAS  Google Scholar 

  39. Shapiro LA, Jedeikin RJ, Shalev D. Epidural morphine analgesia in children. Anesthesiology. 1984;61:210-212.

    Article  PubMed  CAS  Google Scholar 

  40. Krane EJ, Jacobson LE, Lynn AM. Caudal morphine for postoperative analgesia in children: A comparison with caudal bupivacaine and intravenous morphine. Anesth Analg. 1987;66:647-653.

    Article  PubMed  CAS  Google Scholar 

  41. Jones SEF, Beasley JM, Macfarlane DWR. Intrathecal morphine for postoperative pain relief in children. Br J Anaesth. 1984;56:137-140.

    Article  PubMed  CAS  Google Scholar 

  42. Chaney MA, Furry PA, Fluder EM. Intrathecal morphine for coronary artery bypass grafting and early extubation. Anesth Analg. 1997;84:241-248.

    PubMed  CAS  Google Scholar 

  43. Tobias JD, Deshpande JK, Wetzell RC. Postoperative analgesia: Use of intrathecal morphine in children. Clin Pediatr. 1997;29:44-48.

    Article  Google Scholar 

  44. Kirno K, Friberg P, Grzegorczyk A. Thoracic epidural anesthesia during coronary artery bypass surgery: Effects on cardiac sympathetic activity, myocardial blood flow and metabolism, and central hemodynamics. Anesth Analg. 1994;79:1075-1081.

    PubMed  CAS  Google Scholar 

  45. Liu S, Carpenter RL, Neal JM. Epidural anesthesia and analgesia: Their role in postoperative outcome. Anesthesiology. 1995;82:1474-1506.

    Article  PubMed  CAS  Google Scholar 

  46. Kock M, Blomberg S, Emanuelsson H. Thoracic epidural anesthesia improves global and neuraxial left ventricular function during stress-induced myocardial ischemia in patients with coronary artery disease. Anesth Analg. 1990;71:625-630.

    Article  PubMed  CAS  Google Scholar 

  47. Blomberg SG. Long term home self-treatment with high thoracic epidural anesthesia in patients with severe coronary artery disease. Anesth Analg. 1994;79:413-421.

    Article  PubMed  CAS  Google Scholar 

  48. Blomberg S, Curelaru I, Emanuelsson H. Thoracic epidural anesthesia in patients with unstable angina pectoris. Eur Heart J. 1989;10:437-444.

    PubMed  CAS  Google Scholar 

  49. Sivarajan M, Amory DW, Lindbloom LE. Systemic and regional blood-flow changes during spinal anesthesia in the rhesus money. Anesthesiology. 1975;43:78-88.

    Article  PubMed  CAS  Google Scholar 

  50. Finkel JC, Boltz MG, Conran AM. Hemodynamic changes during spinal anesthesia in children undergoing open heart surgery. Anesth Analg. 1998;86:S400.

    Article  Google Scholar 

  51. Tryba M. Epidural regional anesthesia and low molecular weight heparin: Pro [German]. Anasthesiol Intensivmed Notfallmed Schmerzther. 1993;28:179-181.

    Article  PubMed  CAS  Google Scholar 

  52. Rao TLK, El-Etr AA. Anticoagulation following placement of epidural and subarachnoid catheters: An evaluation of neurologic sequelae. Anesthesiology. 1981;55:618-620.

    Article  PubMed  CAS  Google Scholar 

  53. Chaney MA. Intrathecal and epidural anesthesia and analgesia for cardiac surgery. Anesth Analg. 1997;84:1211-1221.

    PubMed  CAS  Google Scholar 

  54. Bressehan C, Krumpholz R, Jost R, et al. Intraspinal haematoma following lumbar epidural anesthesia in a neonate. Paediatr Anaesth. 2001;11:105-108.

    Article  Google Scholar 

  55. Bromage PR, Camporesi EM, Durant PAC. Rostral spread of epidural morphine. Anesthesiology. 1982;56:431-436.

    Article  PubMed  CAS  Google Scholar 

  56. Dahlstrom B. Pharmacokinetics and pharmacodynamics of epidural and intrathecal morphine. Int Anesthesiol Clin. 1986;24:29-42.

    Article  PubMed  CAS  Google Scholar 

  57. Goodarzi M. Comparison of epidural morphine, hydromorphone and fentanyl for postopertive pain control in children undergoing orthopaedic surgery. Paediatr Anaesth. 1999;9:419-422.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund H. Jooste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jooste, E.H., Litchenstein, S.E., Davis, P.J. (2009). Sedation and Analgesia. In: Munoz, R., Morell, V., Cruz, E., Vetterly, C. (eds) Critical Care of Children with Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84882-262-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-262-7_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-261-0

  • Online ISBN: 978-1-84882-262-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics