Skip to main content

Catalyst Synthesis Techniques

  • Chapter

Abstract

This chapter deals with aspects of the synthesis of fuel cell catalysts. Practical catalysts for low-temperature fuel cells are typically in the nano-size range and are frequently formed or deposited on high-surface-area supports. Pt is the most commonly used catalyst for both cathode and anode in proton exchange membrane fuel cells (PEMFCs). In the case of the cathode, combined catalyst systems such as Pt nanoparticles supported on Au or Pt alloy catalysts, as well as Pt-skin catalysts formed in combination with the iron group metals have also attracted attention. Much work has been carried out on the development of “non-noble” metal (Pt-free) catalysts, the synthesis of which will be discussed in Section 9.5. In the case of the anode, bi-metallic catalysts are typically employed unless the fuel is neat H2. Pt-Ru is the state-of-the-art catalyst for both methanol and reformate fuel cells. For the latter, other anode catalysts such as Pt/MoOx and Pt/Sn are also considered promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKee DW, Norton JF. Catalytic exchange of methane and deuterium on platinum, ruthenium, and platinum-ruthenium alloys. J Phys Chem 1964;68(3):481.

    Article  Google Scholar 

  2. Bock C, MacDougall B, LePage Y. Dependence of CH3OH oxidation activity for a wide range of PtRu Alloys: detailed analysis and new views. J Electrochem Soc 2004;151(8):A1269.

    Article  Google Scholar 

  3. Machida K, Fukuoka A, Ichikawa M, Enyio M. Preparation of platinum clusterderived electrodes from metal carbonyl complexes and their electrocatalytic properties for anodic oxidation of methanol. J Electrochem Soc 1991;138:1958.

    Article  Google Scholar 

  4. Dickinson AJ, Carrette LPL, Collins JA, Friedrich KA, Stimming U. Preparation of a Pt---Ru/C catalyst from carbonyl complexes for fuel cell applications. Electrochim Acta 2002;47:3733.

    Article  Google Scholar 

  5. Longoni G, Chini P. Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n 2- (n = ~10,6,5,4,3,2,1). A new series of inorganic oligomers. J Am Chem Soc 1976;98:7225.

    Article  Google Scholar 

  6. Adams RD, Wu W. Adams RD, Wu W. Cluster synthesis. 41. New platinumruthenium cluster complexes from the reaction of diphenylacetylene PhC CPh with Pt2Ru4(CO)18. Synthesis and structural characterizations of Pt2Ru3(CO)832-PhC2Ph)242-PhC2Ph), Pt3Ru6(CO)14(μ3-2-PhC2Ph)3, Pt2Ru4(CO)14(μ32-PhC2Ph)(μ42-PhC2Ph), Pt3Ru6(CO)1832-PhC2Ph)3, and PtRu2(CO)632-PhC2Ph)(dppe). 1993, 12, 1248. Organometallics 1993;12:1248–56.

    Article  Google Scholar 

  7. Alonso-Vante N. Carbonyl tailored electrocatalysts. Fuel Cells 2006;6:182.

    Article  Google Scholar 

  8. Teranishi T, Hosoe M, Tanaka T, Miyake M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B 1999;103:3818.

    Article  Google Scholar 

  9. Watanabe M, Uchida M, Motoo S. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem 1987;229:395.

    Article  Google Scholar 

  10. Petrow HG, Allen RJ, inventors; Protech Co, assignee. Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same. United States patent US4044193. 1977 Aug 23.

    Google Scholar 

  11. Ko IE. Sol-gel process. In: Ertl G, Knözinger H, Weitkamp J, editors. Preparation of solid catalysts. Weinheim: Wiley-VCH, 1999: 85–98.

    Chapter  Google Scholar 

  12. Bronstein LM. Nanoparticles made in mesoporous solids. Top Curr Chem 2003;226:55.

    Article  Google Scholar 

  13. McLeod EJ, Birss VI. Sol-gel derived WOx and WOx/Pt films for direct methanol fuel cell catalyst applications. Electrochim Acta 2005;51:684.

    Article  Google Scholar 

  14. Marie J, Berthon-Gabry S, Achard P, Chatenet M, Pradourat A, Chainet E. Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cellelectrodes: comparison of two different synthesis paths. J Non-Cryst Solids 2004;350:88.

    Article  Google Scholar 

  15. Cherstiouk OV, Simonov PA, Zaikovskii VI, Savinova ER. CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes. J Electroanal Chem 2003;554:241.

    Article  Google Scholar 

  16. Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U. Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss 2004;125:357.

    Article  Google Scholar 

  17. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson D, et al. A review of anode catalysis in the direct methanol fuel cell. J Power Sources 2006;155:95.

    Google Scholar 

  18. Gélin P, Primet M. Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal 2002 ;39:B1.

    Article  Google Scholar 

  19. Rodriguez FJ, Sebastian PJ, Solorza O, Perez R. Mo–Ru–W chalcogenide electrodes prepared by chemical synthesis and screen printing for fuel cell applications. Int J Hydrogen Energy 1998;23:1031.

    Article  Google Scholar 

  20. Spinacé EV, Neto AO, Linardi M. Electro-oxidation of ethanol on PtRu/C electrocatalysts prepared from ( -C2H4)(Cl)Pt(μCl)2Ru(Cl)( 3 , 3 -C10H16). J Power Sources 2003;124:426.

    Article  Google Scholar 

  21. Zhang Y, Erkey C. Preparation of supported metallic nanoparticles using supercritical fluids: a review. J Supercrit Fluids 2006;38:252.

    Article  Google Scholar 

  22. Pileni MP. Reverse micelles as microreactors. J Phys Chem 1993;97:6961.

    Article  Google Scholar 

  23. Petit C, Pileni MP. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels. J Phys Chem 1988;92:2282.

    Article  Google Scholar 

  24. Courty A, Lisiecki I, Pileni MP. Vibration of self-organized silver nanocrystals. J Chem Phys 2002;116:8074.

    Article  Google Scholar 

  25. Salzemann C, Lisiecki I, Urban J, Pileni MP. Anisotropic copper nanocrystals synthesized in a supersaturated medium: nanocrystal growth. Langmuir 2004;10:11772.

    Article  Google Scholar 

  26. Salzemann C, Lisiecki I, Brioude A, Urban J, Pileni MP. Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects. J Phys Chem B 2004;108:13242.

    Article  Google Scholar 

  27. Xiong L, Manthiram A. Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ionics 2005;176:385.

    Article  Google Scholar 

  28. Godoi DRM, Perez J, Villullas HM. Influence of particle size on the properties of Pt–Ru/C catalysts prepared by a microemulsion method. J Electrochem Soc 2007;154:B474.

    Article  Google Scholar 

  29. Eriksson S, Nylen U, Rojas S, Boutonnet M. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysts. Appl Catal 2004;265:A207.

    Article  Google Scholar 

  30. Uskokovi V, Drofenik M. Reverse micelles: Inert nano-reactors or physiocochemically active guides of the capped reactions. Adv Colloid Interface Sci 2007;133:23.

    Article  Google Scholar 

  31. Lisieck I, Pileni MP. Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 1993;115:3887.

    Article  Google Scholar 

  32. Kizling J. PhD dissertation. Stockholm: Royal Institute of Technology, 1991.

    Google Scholar 

  33. Shimazu K, Weisshaar D, Kuwana T. Electrochemical dispersion of Pt microparticles on glassy carbon electrodes. J Electroanal Chem 1987;223:223–34.

    Article  Google Scholar 

  34. Zoval JV, Lee J, Gorer S, Penner RM. Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J Phys Chem B 1998;102:1166.

    Article  Google Scholar 

  35. Lu G, Zangari G. Electrodeposition of platinum on highly oriented pyrolytic graphite. Part I: electrochemical characterization. J Phys Chem B 2005;109:7998.

    Article  Google Scholar 

  36. Antoine O, Durand R. In situ electrochemical deposition of Pt nanoparticles on carbon and inside Nafion. Electrochem Solid-State Lett 2001;4:A55.

    Article  Google Scholar 

  37. He Z, Chen J, Liu D, Tang H, Deng W, Kuang Y. Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation. Mater Chem Phys 2004;85:396.

    Article  Google Scholar 

  38. Georgolios N, Jannakoudakis D, Karabinas P. Electrodeposition of pan-based carbon fibres. J Electroanal Chem 1989;264:235.

    Article  Google Scholar 

  39. Hoster H, Iwasita T, Baumgartner H, Vielstich W. Pt–Ru model catalysts for anodic methanol oxidation: Influence of structure and composition on the reactivity. Phys Chem Chem Phys 2001;3(3):337.

    Article  Google Scholar 

  40. Maillard F, Lu C-Q, Wieckowski A, Stimming U. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 2005;109:16230.

    Article  Google Scholar 

  41. Budevski E, Staikov G, Lorenz WJ. Fundamentals of electrocrystallization of metals. In: Electrochemical phase formation and growth. An introduction to the initial stages of metal deposition. New York: Wiley-VCH, 1996.

    Google Scholar 

  42. Greef R, Peat R, Peter LM, Pletcher D, Robinson J. Electrocrystallization. In: Kemp TJ, editor. Instrumental methods in electrochemistry. New York, Ellis Horwook Limited, 1985: 283–4.

    Google Scholar 

  43. Xue X, Liu C, Xing W, Lu T. Physical and electrochemical characterizations of PtRu/C catalysts by spray pyrolysis for electrocatalytic oxidation of methanol. J Electrochem Soc 2006;153:E79.

    Article  Google Scholar 

  44. Patil PS. Versatility of chemical spray pyrolysis technique. Mater Chem Phys 1999;59:185.

    Article  MathSciNet  Google Scholar 

  45. Mueller R, Mädler L, Pratsinis SE. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem Eng Sci 2003;58:1969.

    Article  Google Scholar 

  46. Jairath R, Jain A, Tolles RD, Hampden-Smith MJ, Kodas TT. Introduction. In: Kodas T, Hampden-Smith M, editors. The chemistry of metal CVD. New York: Wiley-VCH, 1994: 28–30.

    Google Scholar 

  47. Huang SF, Chi Y, Bock C, MacDougall B, Carty A. Preparation of the Ru-Pt alloyed thin-films by chemical vapor deposition using single source precursor. Chem Vap Dep 2003;3:9.

    Google Scholar 

  48. Sivakumar P, Ishak R, Tricoli V. Novel Pt–Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation: Part I Preparation and physical characterization. Electrochim Acta 2005;50:3312.

    Article  Google Scholar 

  49. Kodas TT, Hampden-Smith MJ. Overview of Metal CVD. In: Kodas T, Hampden-Smith M, editors. The chemistry of metal CVD. New York: Wiley-VCH, 1994: 432.

    Google Scholar 

  50. Antolini E, Salgado JRC, daSilva RM, Gonzalez ER. Preparation of carbon support binary Pt-M alloy catalysts (M=first row transition metals) by low/medium temperature methods. Mater Chem Phys 2007;101:395.

    Article  Google Scholar 

  51. Harsha KSS. Thermal evaporation sources. In: Principles of physical vapor deposition of thin films. New York: Elsevier, 2006: 381–400.

    Google Scholar 

  52. Zhong D, Mishra B, Moore JJ, Madan A. Effect of pulsed plasma processing on controlling nanostructure and properties of thin film/coatings. Surf Eng 2004;20:19.

    Article  Google Scholar 

  53. Denis MC, Lalande G, Guay D, Dodelet JP, Schulz R. High energy ball-milled Pt and Pt–Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO. J Appl Electrochem 1999;29(8):951.

    Article  Google Scholar 

  54. Lalande G, Denis MC, Guay D, Dodelet JP, Schulz R. Structural and surface characterizations of nanocrystalline Pt–Ru alloys prepared by high-energy ball-milling. J Alloys Compd 1999;292(1–2):301.

    Article  Google Scholar 

  55. Denis MC, Gouerec P, Guay D, Dodelet JP, Lalande G, Schulz R. Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells. J Appl Electrochem 2000;30(11):1243.

    Article  Google Scholar 

  56. He C, Desai S, Brown G, Bollepalli S. PEM fuel cell catalysts: cost, performance, and durability. The Electrochemical Society Interface 2005; Fall:41–4.

    Google Scholar 

  57. Bregoli L. The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochim Acta 1978;23:489.

    Article  Google Scholar 

  58. Watanabe M, Sei H, Stonehardt P. The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 1989;261:375.

    Article  Google Scholar 

  59. Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 1990;137(3):845.

    Article  Google Scholar 

  60. Bock C, Birry L, MacDougall B. Manuscript in preparation.

    Google Scholar 

  61. Xue X, Bock C, MacDougall B. J Power Sources, to be submitted.

    Google Scholar 

  62. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Disscuss Faraday Soc 1951;11:55.

    Article  Google Scholar 

  63. Harriman A, Millward GR, Neta P, Richoux MC, Thomas JM. Interfacial electrontransfer reactions between platinum colloids and reducing radicals in aqueous solution. J Phys Chem 1988;92:1286.

    Article  Google Scholar 

  64. Lide DR, editor. CRC handbook of chemistry and physics. 71st edition. Boston: CRC Press, 1990–1991.

    Google Scholar 

  65. Laine RM, Sellinger A, inventors; Canon KK, assignee. Preparation of supported nano-sized catalyst particles via a polyol process. United States Patent US6551960 B1, 2003 Apr 22.

    Google Scholar 

  66. Wang Y, Ren J, Deng K, Gui L, Tang Y. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem Mater 2000;12:1622.

    Article  MATH  Google Scholar 

  67. Bock C, Paquet C, Couillard M, Button G, MacDougall B. Size selected synthesis of PtRu nano-catalysts and their application for organic electro-oxidation reactions. J Am Chem Soc 2004;126(25):8028.

    Article  Google Scholar 

  68. Schmidt TJ, Noeske M, Gasteiger HA, Behm RJ, Britz P, Brijoux W, et al. Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements. Langmuir 1997;13:2591.

    Article  Google Scholar 

  69. Dubeau L, Coutanceau C, Garnier E, Leger JM, Lamy C. Electrooxidation of methanol at platinum–ruthenium catalysts prepared from colloidal precursors: atomic composition and temperature effects. J Appl Electrochem 2003;33:419.

    Article  Google Scholar 

  70. Liu ZF, Ada ET, Shamsuzzoha M, Thompson GB, Nikles DE. Synthesis and activation of PtRu alloyed nanoparticles with controlled size and composition. Chem Mater 2006;18:4946.

    Article  Google Scholar 

  71. Attard GS, Bartlett PN, Coleman NRB, Elliott JM, Owen JR, Wang JH. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 1997;278:838.

    Article  Google Scholar 

  72. Gollas B, Elliot JM, Bartlett PN. Electrodeposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10 MHz. Electrochim Acta 2000;45:3711.

    Article  Google Scholar 

  73. Attard GS, Stephane A, Leclerc A, Maniquet S, Russell AE, Nandhakumar I, et al. Mesoporous Pt/Ru alloy from the hexagonal lyotropic liquid crystalline phase of a nonionic surfactant. Chem Mater 2001;13(5):1444.

    Article  Google Scholar 

  74. Seidel YE, Lindstrom R, Jusyz Z, Cai J, Wiedwald U, Ziemann P, et al. Nanostructured Pt/GC model electrodes prepared by the deposition of metal-saltloaded micelles. Langmuir 2007;23:5795.

    Article  Google Scholar 

  75. Bartlett PN, Birkin PR, Ghanem MA. Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates. Chem Commun 2000;17:1671.

    Article  Google Scholar 

  76. C-Chien , Jeng CK-T. Noble metal fuel cell catalysts with nano-network structures. Mat Chem and Phys 2007;103:400.

    Article  Google Scholar 

  77. Tracz A, Wegner G, Rabe JP. Scanning tunneling microscopy study of graphite oxidation in ozone-air mixtures. Langmuir 2003;19:6807.

    Article  Google Scholar 

  78. Halvorsen H, Bock C, MacDougall B, Wang D. Potentiostatic deposition of platinum clusters onto freshly cleaved and ozone oxidized highly ordered pyrolytic graphite. J Electrochem Soc. Submitted 2008.

    Google Scholar 

  79. Cherstiouk OV, Simonov PA, Savinova ER. Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG. Electrochim Acta 2003;48:3851.

    Article  Google Scholar 

  80. Teranishi T, Kurita R, Miyake M. Shape control of Pt nanoparticles. J Inorg Organomet Polym 2000;10:145.

    Article  Google Scholar 

  81. Yoo JW, Lee S-M, Kim H-T, El-Sayed MA. Shape control of platinum nanoparticles by using different capping organic materials. Bull Korean Chem Soc 2004;25:395.

    Article  Google Scholar 

  82. Petroski JM, Wang ZL, Green TC, El-Sayed MA. Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 1998;102:3316.

    Article  Google Scholar 

  83. KingeS S, Bönnemann H. One-pot dual size- and shape selective synthesis of tetrahedral Pt nanoparticles. Appl Organomet Chem 2006;20:784.

    Article  Google Scholar 

  84. Herricks T, Chen J, Xia Y. Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 2004;4:2367.

    Article  Google Scholar 

  85. Stonehardt P. Ber Bunsen-Ges Phys Chem 1990;94:913.

    Google Scholar 

  86. Luczak FJ, Landsman DA, inventors; Int Fuel Cells Corp, assignee. Ordered ternary fuel cell catalysts containing platinum and cobalt and method for making the catalysts. United States patent US4677092. 1987 Dec 23.

    Google Scholar 

  87. Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 1993;357:201.

    Article  Google Scholar 

  88. Toda T, Igarashi H, Watanabe M. Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J Electroanal Chem 1999;460:258.

    Article  Google Scholar 

  89. Chen G, Xia DG, Nie ZR, Wang ZY, Wang L, Zhang L, et al. Facile synthesis of Co-Pt hollow sphere electrocatalyst. Chem Mater 2007;19:1840.

    Article  Google Scholar 

  90. Koh S, Strasser P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 2007;129:12624.

    Article  Google Scholar 

  91. McNicol BD, Short RT. The influence of activation conditions on the performance of platinum/ruthenium methanol electro-oxidation catalysts surface enrichment phenomena. J Electroanal Chem 1977;81:249.

    Article  Google Scholar 

  92. Ruban AV, Skriver HL, Norskov JK. Surface segregation energies in transition-metal alloys. Phys Rev B 1999;59(24):15990.

    Article  Google Scholar 

  93. LePage Y, Bock C, Rodgers JR. Small step graphs of cell data versus composition for ccp solid-solution binary alloys: application to the (Pt,Ir), (Pt,Re) and (Pt,Ru) systems. J Alloys Compd 2006;422:164.

    Article  Google Scholar 

  94. Colon-Mercado HR, Kim H, Popov BN. Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells. Electrochem Commun 2004;6:795.

    Article  Google Scholar 

  95. Toshima N, Harada M, Yamazaki Y, Asakura K. Formation and growth of a ruthenium cluster in a Y zeolite supercage probed by xenon-129 NMR spectroscopy and xenon adsorption measurements. J Phys Chem 1992;96:9927.

    Article  Google Scholar 

  96. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 1998;22:1179.

    Article  Google Scholar 

  97. Barbier J. Redox methods for preparation of bimetallic catalysts. In: Ertl G, Knözinger H, Weitkamp J, editors. Preparation of solid catalysts. Chichester: Wiley-VCH, 1999: 526.

    Chapter  Google Scholar 

  98. Brankovic SR, Wang JX, Adzic RR. Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science Lett 2001;464:L173.

    Article  Google Scholar 

  99. Stamenkovic VR, Mun BS, Arenz M, Mayhofer KJJ, Lucas CA, Wang G, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 2007;6:241.

    Article  Google Scholar 

  100. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007;315:493.

    Article  Google Scholar 

  101. Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG. Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J Am Chem Soc 1997;119:7760.

    Article  Google Scholar 

  102. Jasinski R. A new fuel cell cathode catalyst. Nature 1964;201:1212.

    Article  Google Scholar 

  103. Dodelet JP. Chapter 3. In: Zagal JH, Bedioni F, Dodelet JP, editors. N4-macrocyclic metal complexes. New York: Springer, 2006:83–139.

    Chapter  Google Scholar 

  104. Zagal JH, Paez MA, Silva SF. Chapter 2. In: Zagal JH, Bedioni F, Dodelet JP, editors. N4-macrocyclic metal complexes. New York: Springer, 2006:41–82.

    Chapter  Google Scholar 

  105. Jahnke H, Schonborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells. Top Curr Chem 1976;61:133.

    Article  Google Scholar 

  106. Gupta S, Tryk L, Bae D, Aldred I, Yeager WE. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 1989;19:19.

    Article  Google Scholar 

  107. Gupta SL, Tryk D, Daroux M, Aldred W, Yeager E. In: Chin D, editor. Proceedings of the Symposium on Load Leveling and Energy Conservation in Industrial Processes. Pennington, NJ: The Electrochemical Society, 1986: 207.

    Google Scholar 

  108. Zagal JH. Chapter 37. In: Vielstich W, Lamm A, Gasteiger HA, editors. Handbook of fuel cells, Volume 2. London: Wiley, 2003: 544–54.

    Google Scholar 

  109. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 2005;56:9.

    Article  Google Scholar 

  110. Jaoven F, Marcotte S, Dodelet JP, Lindbergh G. J Phys Chem B 2003;107:1376.

    Article  Google Scholar 

  111. Faubert G, Cote R, Dodelet JP, Lefevre M, Bertrand P. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride. Electrochim Acta 1999;44:2589.

    Article  Google Scholar 

  112. Lefevre M, Dodelet JP, Bertrand P. O2 reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors. J Phys Chem B 2000;104:11238.

    Article  Google Scholar 

  113. Bron M, Fiechter S, Bogdanoff P, Tributsch H. Fuel Cells: Fundam Syst 2002;2:137.

    Google Scholar 

  114. Bron M, Radnick J, Fieber M, Erdmann U, Bogdanoff P, Fiechter S. EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. J Electroanal Chem 2002;535:113.

    Article  Google Scholar 

  115. LaConti AB, Hamdan M, MacDonald RC. Chapter 49. In: Vielstich W, Lamm A, Gasteiger HA, editors. Handbook of fuel cells, Volume 3. London: Wiley, 2003: 647.

    Google Scholar 

  116. Alonso-Vante N, Tributsch A. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature (London) 1986;323:431.

    Article  Google Scholar 

  117. Alonso-Vante N, Jaegermann W, Tributsch H, Houle W, Yvon K. Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Amer Chem Soc 1987;109:3251.

    Article  Google Scholar 

  118. Schmidt T, Paulus J, Gasteiger UA, Alonso-Vante HA, Behm NRJ. Oxygen reduction on Ru1.92Mo0.08SeO4, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes. J Electrochem Soc 2000;147:2620.

    Article  Google Scholar 

  119. Chevrel R, Sergent M, Pringent J. Sur de nouvelles phases sulfurées ternaires du molybdène. J Solid State Chem 1971;3:515.

    Article  Google Scholar 

  120. Alonso-Vante N. Chapter 36. In: Vielstich W, Lamm A, Gasteiger HA, editors. Handbook of fuel cells, Volume 2. London: Wiley, 2003: 534.

    Google Scholar 

  121. Zhang Y, Zhang L, Wilkinson J, Wang DPH. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 2006;156:171.

    Article  Google Scholar 

  122. Lee JW, Popov BN. Ruthenium-based electrocatalysts for oxygen reduction reaction – a review. J Solid State Electrochem 2007;11:1355.

    Article  Google Scholar 

  123. Tributsch H, Bron M, Hilgendorff M, Schulenburg H, Dorbandt I, Eyert V, et al. Methanol-resistant cathodic oxygen reduction catalysts for methanol fuel cells. J Appl Electrochem 2001;31:739.

    Article  Google Scholar 

  124. Liu L, Kim H, Lee J-W, Popov BN. Development of ruthenium-based catalysts for oxygen reduction reaction. J Electrochem Soc 2007;154:A123.

    Article  Google Scholar 

  125. Zailovskii VI, Nagabhushana KS, Kriventsov VV, Cherepanova KN, Kvon RI, Bonnemann H, et al. Synthesis and structural characterization of Se-modified carbonsupported Ru nanoparticles for the oxygen reduction reaction. J Phys Chem B 2006: 110(13):6881–90; see also Zehl G, Dorbandt I, Schmithals G, Radnik J, Wippermann K, Richter B, et al. Preparation of carbon supported Ru-Se based catalysts and their electrochemical performance in DMFC cathodes. ECS Transactions 2006;3:1261.

    Google Scholar 

  126. Bron M, Bogdanoff P, Fiechter S, Dorbandt I, Hilgendorff M, Schulenburg H, et al. Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction. J Electroanal Chem 2001;500:510.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Bock, C., Halvorsen, H., MacDougall, B. (2008). Catalyst Synthesis Techniques. In: Zhang, J. (eds) PEM Fuel Cell Electrocatalysts and Catalyst Layers. Springer, London. https://doi.org/10.1007/978-1-84800-936-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-936-3_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-935-6

  • Online ISBN: 978-1-84800-936-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics