Skip to main content

Parallel Kinematics for Machine Tools

  • Chapter

Abstract

Parallel kinematics is a branch of mechanics that focusses on manipulators formed by closed kinematic chains, i.e., mechanisms that have an endeffector joined to the fixed frame by several limbs. Such a kinematic structure provides some advantages regarding stiffness, acceleration and weight, but has some drawbacks due to mechanical complexity and limited workspaces. In the field of machining, there have been several applications of such mechanisms to machine tools. Earlier designs based on hexapods did not fulfil expectations but new topologies are promising. In this chapter, there is first a description of the evolution of parallel kinematics in the manufacturing industry. Second, the authors expose a design methodology giving some hints on the main problems to overcome. Third, there is a study on calibration processes that can be applied to these machines. And, at the end, there is a description of control issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An CH, Atkeson CG, Hollerbach JM (1986) Experimental determination of the effect of feedforward control on trajectory tracking errors. Proc of IEEE Int Conf on Robotics and Automation, 55–60

    Google Scholar 

  2. Andreff N, Renaud P, Pierrot F, Martinet P (2004) Vision-Based Kinematic Calibration of an H4 Parallel Mechanism: Practical Accuracies. Industrial Robot Int J, 31(3):273–283

    Article  Google Scholar 

  3. Ball RS (1900) A treatise on the theory of screws. Cambridge University Press, Cambridge

    Google Scholar 

  4. Bianchi G, Fassi I, Molinari Tosatti LA (2001) Virtual Prototyping Environment for Parallel Kinematic Machine Analysis and Design 32nd Int Symposium on Robotics, Korea

    Google Scholar 

  5. Chanal H, Duc E, Ray P, Hascoët J-Y (2007) A new approach for the geometrical calibration of parallel kinematics machines tools based on the machining of a dedicated part. Int J of Mach Tool aManufact, 47(7–8):1151–1163

    Article  Google Scholar 

  6. Chanal H, Duc E, Ray P, Hascoët J-Y (2006) Design of a dedicated machined part for calibrating a parallel kinematics machine tool, 5 congrès Int Usinage à Grande Vitesse, Metz, 317–328

    Google Scholar 

  7. Clavel R (1991) Conception d’un robot parallèle rapide à 4 degrés de liberté. PhD Thesis, EPFL, Lausanne, Switzerland

    Google Scholar 

  8. Codourey A (1998) Dynamic modeling of parallel robots for computed-torque control implementation. Int J of Robotics Research, 17(12):1325–1336

    Article  Google Scholar 

  9. Collado V, Herranz S (2004) Space 5H – A New Machine Concept for 5-Axis Milling of Aeronautical Structural Components. PKS 2004 Conf Proc

    Google Scholar 

  10. Daeyoung Machinery Eclipse-RP. US Patent No. 6,135,683

    Google Scholar 

  11. Daney D, Papegay Y, Madeline B (2005) Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu. Int J of Robotics Research. 24(6):501–518

    Article  Google Scholar 

  12. Driels MR, Pathre US (1990) Significance of observation strategy on the design of robot calibration experiments. J of Robotic Systems, 7(2):197–223

    Article  Google Scholar 

  13. Giddings&Lewis Variax. US Patent No. 5,388,935

    Google Scholar 

  14. Gosselin CM, Angeles J (1990) Singularity analysis of closed loop kinematic chains. IEEE Trans on Robotics and Automation. 6(3): 281–290

    Article  Google Scholar 

  15. Gosselin CM, Kong X (2004) Cartesian Paralle manipulators. Patent US 6729202

    Google Scholar 

  16. Gosselin CM, Pierre ES, Gagné M (1996) On the Development of the Agile Eye. IEEE Robotics and Automation Magazine

    Google Scholar 

  17. Gough V, Whitehall S (1962) Universal tyre test machine. Proc of the FISITA ninth Int technical congress. 117–137

    Google Scholar 

  18. Hennes N, Staimer D (2004) Application of PKM in Aerospace Manufacturing – High Performance Machining Centers ECOSPEED, ECOSPEED-F and ECOLINER. PKS 2004 Conference Proceedings.

    Google Scholar 

  19. Hermes Patent EP1 245 349

    Google Scholar 

  20. Hervé J M (1999) The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design. Mechanism and Machine Theory. 34(5): 719–730

    Article  MATH  MathSciNet  Google Scholar 

  21. Hesselbach J, Kerle H, Frindt M, Pietsch (2001) I PORTYS – A machine concept with parallel structure for precise pick and place operations at high-speed. In: Proc of RAAD Int Workshop on Robotics in Alpe-Adria-Danube Region

    Google Scholar 

  22. Hesselbach J, Becker O, Krefft M, Pietsch I, Plitea N (2002) Dynamic modelling of plane parallel robots for control purposes. In: Proc. of the Chemnitz Parallel Kinematics Seminar (PKS):391–409

    Google Scholar 

  23. Honegger M, Brega R, Schweiter G (2000) Application of a nonlinear adaptive controller to a 6 DOF parallel manipulator. In Robotics and Automation, Proc. ICRA ’00. IEEE Int Conference 2:1930–1935

    Google Scholar 

  24. http://www.ds-technologie.de

    Google Scholar 

  25. Ingersoll Octahedral Hexapod HOH-600. US Patent No. 5,392,663

    Google Scholar 

  26. Kim DH, Kang JY, Lee KI (2000) Robust tracking control design for a 6 DOF parallel manipulator. J of Robotic Systems,17:527–547

    Article  MATH  Google Scholar 

  27. Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer, Dordrecht

    MATH  Google Scholar 

  28. Loreto H, Garrido R (2005) Stable neural PD controller for redundantly actuated parallel manipulators with uncertain kinematics. In: Decision and Control, 2005 and 2005 European Control Conf CDC-ECC ’05. 2035–2040

    Google Scholar 

  29. Li CG, Ding HS, Wu PD (2003) Application of mrac to a 6-DOF parallel machine tool. In: Machine Learning and Cybernetics, 2003 Int Conf, 4:2164–2167

    Google Scholar 

  30. Maurine P, Abe K, Uchiyama M (1999) Toward more accurate parallel robots. In: 15th World Congress of Int. Measurement Confederation, Osaka

    Google Scholar 

  31. Meggiolaro MA, Dubowsky S (2000) An Analytical Method to Eliminate the Redundant Parameters in Robot Calibration. Proceedings of the 2000 IEEE Int Conference on Robotics and Automation, 3609–3615

    Google Scholar 

  32. Menq CH, Borm JH, Lai JZ (1989) Identification and observability measure of a basis set of error parameters in robot calibration. J of Mechanisms, Transmissions and Automation in Design, 11:513–518

    Article  Google Scholar 

  33. Merlet JP (2006) Parallel Robots. Springer, Dordrecht

    MATH  Google Scholar 

  34. Mikromat 6X. WO9943463A1: Hexapod Machining Centre

    Google Scholar 

  35. Nahvi A, Hollerbach JM, Hayward V (1994) Calibration of a parallel robot using multiple kinematic closed loops. Proc IEEE Int Conf Robotics and Automation, 407–412

    Google Scholar 

  36. Nahvi A, Hollerbach JM (1996) The noise amplification index for optimal pose selection in robot calibration. In: IEEE Int Conf on Robotics and Automation, 647–654

    Google Scholar 

  37. Neumann KE (1988) Robot. US Patent No. 4732525

    Google Scholar 

  38. Okuma Cosmo Center PM-600. US Patent No. 6,203,254

    Google Scholar 

  39. Ota H, Shibukawa T, Tooyama T, Uchiyama M (2002) Forward Kinematic Calibration Method for Parallel Mechanism Using Pose Data Measured by a Double Ball Bar System. In: 1st Korea Japan Conf Positioning Technol 2002,113–118

    Google Scholar 

  40. Pierrot F, Company O et al. (2001) Four degrees of freedom parallel robot. Patent EP 1084802

    Google Scholar 

  41. Pierrot F, Marquet F, Company O, Gil T (2001) H4 parallel robot: Modeling, design and preliminary experiments, ICRA ’01: Int Conf on Robotics and Automation, 3256–3261

    Google Scholar 

  42. Pritschow G, Eppler C, Garber T (2002) Influence of the dynamic stiffness on the accuracy of PKM. In: Proc of The 3rd Chemnitz Parallel Kinematics Seminar, PKS 2002, 313–333

    Google Scholar 

  43. Salgado O, Altuzarra O et al. (2007) Robot paralelo con cuatro grados de libertad. Spanish Patent P200702793

    Google Scholar 

  44. San Martin Y, Gimenez M, Rauch M, Hascoët J-Y (2006) Verne – a new 5 axes hybrid architecture machining centre. In: Proc of the 5th Chemnitz Parallel Kinematics Seminar, PKS 2006

    Google Scholar 

  45. Schoppe E, Pönish A, Maier V, Puchtler T, Ihlenfeldt S (2002) Tripod Machine SKM 400 Design, Calibration and Practical Application. In: Proc of the 3rdh Chemnitz Parallel Kinematics Seminar, PKS 2002, 579–594

    Google Scholar 

  46. Schroer K (1993) Theory of kinematic modelling and numerical procedures for robot calibration. Chapman & Hall, London

    Google Scholar 

  47. Schwaar M, Jaehnert T, Ihlenfeldt S (2002) Mechatronic Design, Experimental Property Analysis and Machining Strategies for a 5-Strut-PKM. PKS 2002 Conference Proceedings

    Google Scholar 

  48. Selig JM (2005) Geometric Fundamentals of Robotics. Springer, Dordrecht

    MATH  Google Scholar 

  49. Stewart D (1965) A platform with six degrees of freedom. Proc of the IMechE, 180(1):371–385

    Article  Google Scholar 

  50. Tsai L, Joshi S (2000) Kinematics and optimization of a spatial 3UPU parallel manipulator. ASME J of Mechanical Design, 122(4):439–446

    Article  Google Scholar 

  51. Vivas A, Poignet P (2005) Predictive functional control of a parallel robot machine. Control Eng Practice, 13(7):863–874

    Article  Google Scholar 

  52. Zhuang H, Liu L (1996) Self-calibration of a class of parallel manipulators. Proceedings of The IEEE Int Conf on Robotics and Automation, 2(2):994–999

    Google Scholar 

  53. Zlatanov D et al. (1998) Identification and classification of the singular configurations of mechanisms. Mechanism and Machine Theory, 33(6):743–760

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Altuzarra, O., Hernández, A., San Martín, Y., Larrañaga, J. (2009). Parallel Kinematics for Machine Tools. In: López de Lacalle, L., Lamikiz, A. (eds) Machine Tools for High Performance Machining. Springer, London. https://doi.org/10.1007/978-1-84800-380-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-380-4_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-379-8

  • Online ISBN: 978-1-84800-380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics