Skip to main content

Active Power Quality Controllers

  • Chapter
  • 3808 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

Dynamic Static Synchronous Compensator is the most important controller for distribution networks and probably in SEEN. It has been widely used since the 1990s to regulate system voltage precisely, improve voltage profile, reduce voltage harmonics, reduce transient voltage disturbances and load compensation. Rather than using conventional capacitors and inductors combined with fast switches, the D-STATCOM uses a power-electronics converter to synthesise the reactive power output. A D-STATCOM converter is controlled using PWM or other voltage/current-shaping techniques. D-STATCOMs are used more often than STATCOM controllers. Compared to STATCOM, D-STATCOMs have considerably lower rated power and, in consequence, faster power-electronics switches; thus the PWM carrier frequency used in a distribution controller can be much higher than in a FACTS controller. It has a substantial positive impact on the dynamics of the D-STACOM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blazic B, Papic I, (2006) Improved D-STATCOM control for operation with unbalanced currents and voltages. IEEE Transactions on Power Delivery, vol.21, no.1:225–233

    Article  Google Scholar 

  2. Escobar G, Stankovic AM, Mattavelli P, (2004) An adaptive controller in stationary reference frame for D-STATCOM in unbalanced operation. IEEE Transactions on Industry Electronics, vol.51, no.2:401–409

    Article  Google Scholar 

  3. Moon GW, (1999) Predictive current control of distribution static compensator for reactive power compensation. IEE Proceedings (Generation, Transmission, Distribution, vol.146, no.5:515–520

    Article  Google Scholar 

  4. Strzelecki R, Supronowicz H, (2000) Power factor correction in AC supply systems and improving methods. (in Polish) Warsaw University of Technology Publishing House

    Google Scholar 

  5. Massoud AM, Finney SJ, Williams BW, (2004) Review of harmonic current extraction techniques for an active power filter. IEEE International Conference on Harmonics and Quality of Power:154–159

    Google Scholar 

  6. Emadi A, Nasiri A, Bekiarov SB, (2005) Uninterruptible power supplies and active filters. CRC Press, USA

    Google Scholar 

  7. Shin EC, Park SM, Oh WH, Kim DS, (2004) A novel hysteresis current controller to reduce the switching frequency and current error in D-STATCOM. Annual Conference of the IEEE Society:1144–1149

    Google Scholar 

  8. Kincic S, Wan XT, McGillis DT, Chandra A, (2005) Voltage support by distributed static VAR systems (SVS). IEEE Transactions on Power Delivery, vol.20, no.2:1541–1549

    Article  Google Scholar 

  9. Haque MH, (2001) Compensation of distribution system voltage sag by DVR and D-STATCOM. IEEE Power Tech Conference, Porto, Portugal

    Google Scholar 

  10. Lee SY, Wu CJ, (1997) Combined compensation structure of an SVC and an active filter for unbalanced three phase distribution feeders with harmonic distortion. Proceedings of the APSCOM International Conference:543–548

    Google Scholar 

  11. Akagi H, (2004) Active filters and energy storage systems for power conditioning in Japan. Proceedings of International Conference on Power Electronics Systems and Application:80–88

    Google Scholar 

  12. Ribeiro PF, Johnson BK, Crow ML, (2001) Energy storage systems for advanced power applications. IEEE Proceedings, vol.89, no.12:1744–1756

    Article  Google Scholar 

  13. Saminemi S, Johnson BK, Hess HL, (2006) Modelling and analysis of a flywheel energy storage system for voltage sag correction. IEEE Transactions on Industrial Applications, vol.42, no.1:42–52

    Article  Google Scholar 

  14. Schoenung SM, Burns C, (1996) Utility energy storage applications studies. IEEE Transactions on Energy Conversion, vol.11, no.3:658–665

    Article  Google Scholar 

  15. Oliveira da Silva SA, Donoso-Garcia PF, Cortizo PC, (2002) A Three-phase lineinteractive UPS system implementation with series-parallel active power-line conditioning capabilities. IEEE Transactions on Industrial Applications, vol.38, no.6:1581–1590

    Article  Google Scholar 

  16. Song YH, Johns AT, (1999) Flexible AC transmission systems (FACTS). The Institution of Electrical Engineers, London, UK

    Google Scholar 

  17. Tanaka T, Wada K, Akagi H, (1995) A new control scheme of series active filters. IPEC Conference:376–381

    Google Scholar 

  18. Blaschke F, (1972) The principal of field orientation as applied to the new transvector close-loop control system for rotating-field machines. Siemens Review, vol.34:217–220

    Google Scholar 

  19. Park RH, (1929) Two reaction theory of synchronous machines. Transactions AIEE, vol.48:716–730

    Google Scholar 

  20. Soares V, Verdelho P, (1998) Instantaneous active and reactive current id-iq calculator suitable to active power filters. International PEMC Conference, vol.8:111–114

    Google Scholar 

  21. Strzelecki R, Frąckowiak L, Benysek G, (1997) Hybrid filtration in conditions of asymmetric nonlinear load current pulsation. European Power Electronics and Applications Conference:1453–1458

    Google Scholar 

  22. Aller JM, Bueno A, Paga T, (2002) Power system analysis using space-vector transformation. IEEE Transactions on Power Systems, vol.17, no.4:957–965

    Article  Google Scholar 

  23. Fortescue CL, (2002) Method of symmetrical coordinates applied to the solution of polyphase networks. Transactions AIEE, vol.37:1027–1140

    Google Scholar 

  24. Clarke E, (1943) Circuit analysis of AC power systems. Wiley, New York

    Google Scholar 

  25. Ferrero A. Leva S, Morando AP, (2004) A systematic, mathematically and physically sound approach to the energy balance in three-wire, three-phase systems. L’Energia Elettrica, vol.81:51–56

    Google Scholar 

  26. Ferrero A, Leva S, Morando AP, (2000) About the role of the Park imaginary power on the three-phase line voltage drop. ETEP, vol.10, no.5:287–286

    Google Scholar 

  27. Akagi H, Kanazawa Y, Nabae A, (1984) Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industrial Applications, vol.IA-20, no.3:625–630

    Article  Google Scholar 

  28. Peng FZ, Lai JS, (1996) Generalized instantaneous reactive power theory for threephase power systems. IEEE Transactions on Instrumentation and Measurement, vol.45, no.1:293–297

    Article  Google Scholar 

  29. Vilathgamuwa DM., Perera AADR., Choi SS, (2003) Voltage sag compensation with energy optimized dynamic voltage restorer. IEEE Transactions on Power Delivery, vol.18, no.3:928–936

    Article  Google Scholar 

  30. Akagi H, Ogasawara S, Kim H, (1999) The theory of instantaneous power in threephase four-wire systems. A comprehensive approach. IEEE IAC Conference, vol.1:431–439

    Google Scholar 

  31. Cardenas V, Moran L, Bahamondes A, Dixon J, (2003) Comparative analysis of real reference generation techniques for four-wire shunt active power filters. IEEE Power Electronics Specialist Conference:791–796

    Google Scholar 

  32. Kim H, Blaabjerg F, Bak-Jensen B, Choi J, (2002) Instantaneous power compensation in three-phase systems by using p-q-r theory. IEEE Transactions on Power Electronics, vol.17, no.5:701–710

    Article  Google Scholar 

  33. Bhavaraju VB, Enjeti PN, (1996) An active line conditioner to balance voltages in a three-phase system. IEEE Transactions on Industrial Applications, vol.32, no.2:287–292

    Article  Google Scholar 

  34. Strzelecki R, Supronowicz H, (1997/1999) Filtration of the harmonic in AC supply systems. (in Polish) Adam Marszałek Publishing House, Poland

    Google Scholar 

  35. Fitzer C, Arulampalm A, Barnes M, Zurowski R, (2002) Mitigation of saturation in dynamic voltage restorers connection transformers. IEEE Transactions on Power Electronics, vol.17, no.6:1058–1066

    Article  Google Scholar 

  36. Woodley NH, Morgan L, Sundaram A, (1999) Experience with an inverter-base dynamic voltage restorer. IEEE Transactions on Power Delivery, vol.14:1181–1185

    Article  Google Scholar 

  37. Jauch T, Kara A, Rahmani M, Westermann D, (1998) Power quality ensured by dynamic voltage correction. ABB rev., vol.4

    Google Scholar 

  38. Kim H, (2002) Minimal energy control for a dynamic voltage restorer. IEEE PCC Conference, vol.2

    Google Scholar 

  39. Vilathgamuwa DM, Perera AADR, Choi SS, (2003) Voltage sag compensation with energy optimized dynamic voltage restorer. IEEE Transactions on Power Delivery, vol.18, no.3:928–936

    Article  Google Scholar 

  40. Didden M, (2003) Techno-economic analysis of methods to reduce damage due to voltage dips. Ph.D. thesis, Catholic University of Leuven, Leuven, Belgium

    Google Scholar 

  41. Nilsen JG, Blaabjerg F, (2005) A detailed comparison of system topologies for dynamic voltage restorers. IEEE Transactions on Industrial Applications, vol.41, no.5:1272–1280

    Article  Google Scholar 

  42. Aredes M, Heumann K, Watanabe EH, (1998) A universal active power line conditioner, IEEE Transactions on Power Delivery, vol.13, no.2:545–551

    Article  Google Scholar 

  43. Strzelecki R, Klytta M, Frąckowiak L, Rusiński J, (1999) Power flow in APLC topologies. Proceedings of the Electrical Power Quality Utilization Conference:391–398

    Google Scholar 

  44. Strzelecki R, Kukluk J, Suproniwicz H, Tunia H, (1999) A universal symmetrical topologies for active power line conditioners. European Power Electronics and Applications Conference

    Google Scholar 

  45. Fujita H, Akagi H, (1998) The unified power quality conditioner: the integration of series- and shunt-active filters. IEEE Transactions on Power Electronics, vol.13, no.2:315–322

    Article  Google Scholar 

  46. Emadi A, Nasiri A, Bekiarov SB, (2005) Uninterruptible power supplies and active filters. CRC Press, Boca Raton, USA

    Google Scholar 

  47. Farrukh Kamran F, Habetler TG, (1998) Combined deadbeat control of a seriesparallel converter combination used as a universal power filter. IEEE Transactions on Power Electronics, vol.13, no.1:160–168

    Article  Google Scholar 

  48. Strzelecki R, Benysek G, Rusiński J, Dębicki H, (2005) Modeling and experimental investigation of the small UPQC systems. IEEE Compatibility in Power Electronics Conference

    Google Scholar 

  49. Han B, Bae B, Baek S, Jan G, (2006) New configuration of UPQC for mediumvoltage application. IEEE Transactions on Power Delivery, vol.21, no.3:1438–1444

    Article  Google Scholar 

  50. Oliveira da Silva SA, Donoso-Garcia PF, Cortizo PC, Seixas PF, (2002) A threephase line-interactive UPS system implementation with series-parallel active powerline conditioning capabilities. IEEE Transactions on Industrial Applications, vol.38, no.6:1581–1590

    Article  Google Scholar 

  51. Kaźmierkowski MP, Krishnan R, Blaabjerg F, (2002) Control in power converters. Selected problems. Academic Press, San Diego, USA

    Google Scholar 

  52. Jin Wang J, Peng FZ, (2004) Unified power flow controller using the cascade multilevel inverter. IEEE Transactions on Power Electronics, vol.19, no. 4:1077 1084

    Article  Google Scholar 

  53. Dmowski A, (1983) AC voltage regulation. Selected systems. (in Polish), WNT, Warsaw, Poland

    Google Scholar 

  54. Montenero-Hernandez OC, Enjeti PN, (2000) Application of a boost AC/AC converter to compensate for voltage sags in electric power distribution systems. Power Electronics Specialists Conference, vol.1:470–475

    Google Scholar 

  55. Gyugyi L, Pelly BR, (1976) Static frequency changers. John Wiley, New York

    Google Scholar 

  56. Strzelecki R, Noculak A, Tunia H, Sozański K, Fedyczak Z, (2001) UPFC with matrix converter. EPE Conference

    Google Scholar 

  57. Demiric O, Torrey DA, Degeneff RC, Schaeffer FK, Frazer RH, (1988) A new approach to solid-state on load tap changing transformer. IEEE Transactions on Power Delivery, vol.13, no.3:952–961

    Article  Google Scholar 

  58. Lipkowski KA, (1983) Transformer-switches performance topologies of the AC/AC converters. (in Russian), Naukova Dumka, Kiev, Ukraine

    Google Scholar 

  59. Hingorani NG, Gyugyi L, (1999) Understanding FACTS. Concepts and technology of flexible AC transmission systems. New York, IEEE Press

    Google Scholar 

  60. Iravani MR, Maratukulam D, (1994) Review of semiconductor controlled (static) phase shifters for power systems applications. IEEE Transactions on Power Systems, vol.9, no.4:1833–1839

    Article  Google Scholar 

  61. Mozdzer AJ, Bose BK, (1976) Three-phase AC power control using power transistors. IEEE Transactions on Industrial Applications, vol.IA-12:499–505

    Article  Google Scholar 

  62. Hamed SA, (1990) Modeling and design of transistor-controlled AC voltage regulators. International Journal Electronics, vol.69, no.3:421–434

    Article  Google Scholar 

  63. Kwon BH, Jeong GY, Han SH, Lee DH, (2002) Novel line conditioner with voltage up/down capability. IEEE Transactions on Industrial Electronics, vol.49, no.5:1110–1119

    Article  Google Scholar 

  64. Fedyczak Z, Strzelecki R, (1997) Power electronics agreement for AC power control. (in Polish) Adam Marszałek Publishing House, Poland

    Google Scholar 

  65. Fedyczak Z, Strzelecki R, Benysek G, (2002) Single phase PWM AC/AC semiconductor transformer topologies and applications. Power Electronics Specialists Conference, vol.2:1048–1053

    Google Scholar 

  66. Lopes LAC, Jóos G, Ooi BT, (1998) A high-power PWM quadrature booster phase shifter based on a multimodule AC controller. IEEE Transactions on Power Electronics, vol.13, no.2:357–365

    Article  Google Scholar 

  67. Vincenti D, Jin H, Ziogas P, (1994) Design and implementation of a 25kVA threephase PWM AC line conditioner. IEEE Transactions on Power Electronics, vol.9, no.4:384–389

    Article  Google Scholar 

  68. Strzelecki R, Fedyczak Z, (1996) Properties and structures of three-phase PWM AC power controllers. Power Electronics Specialists Conference, vol.1:740–746

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Strzelecki, R., Benysek, G. (2008). Active Power Quality Controllers. In: Strzelecki, R., Benysek, G. (eds) Power Electronics in Smart Electrical Energy Networks. Power Systems. Springer, London. https://doi.org/10.1007/978-1-84800-318-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-318-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-317-0

  • Online ISBN: 978-1-84800-318-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics