Skip to main content

Machining of Hard Materials

  • Chapter
Machining

Abstract

This chapter presents basic knowledge on the special kind of the machining process in which a workpiece material hardened to 45–70 HRC hardness or more is machined with mixed ceramic or CBN tools. An extended comparison with finish grinding, as well with other abrasive finishing processes, is carried out. Specific cutting characteristics, including cutting forces, chip formation mechanisms and tool wear modes with relevant interface temperatures are discussed in terms of process conditions. Currently developing finite element (FE) and analytical modelling is overviewed. A complete characterization of surface integrity including geometrical features of hard-machined surfaces, along with specific microstructural alterations and process-induced residual stresses, is provided. Finally, the state of the art of hard cutting technology is addressed for many cutting operations to show how manufacturing chains can be effectively utilized and optimized in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byrne G, Dornfeld D, Denkena B (2003) Advancing cutting technology. Ann CIRP 52/2, 483–507.

    Google Scholar 

  2. Erdel BP (2003) High-Speed Machining. SME, Dearborn.

    Google Scholar 

  3. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. Ann CIRP 54/2, 557–580.

    Google Scholar 

  4. Eredel BP (1998) New dimensions in manufacturing, Hanser Gardner, Cincinnati

    Google Scholar 

  5. Dewes CR, Aspinwall DK (1996) The use of high speed machining for the manufacture of hardened steel dies. Trans NAMRI/SME 24, 21–26.

    Google Scholar 

  6. www.coromant.sandvik.com; www.secotools.com; www.mitsubishicarbide.com, www.yasda.com, www.hardinge.com (accessed 2007).

    Google Scholar 

  7. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. Ann CIRP 54/2, 557–580.

    Google Scholar 

  8. Mushardt H, Manger P (2001) Komplettbearbeitung mit Hartdrehen und Schleifen. Werkstatt und Betrieb. 134/1–2, 37–40.

    Google Scholar 

  9. Beyer R (2002) Hard turning and grinding of HSK tool holders, MAV, No. 10, www.hskworld.com.

    Google Scholar 

  10. Köpfer Ch, When does hard turn/grind make sense?, www.mmsonline.com/articles/040203/html (accessed 2007).

    Google Scholar 

  11. Tönshoff HK, Arendt C, Amor R Ben (2000) Cutting of hardened steel. Ann CIRP 49/2, 547–566.

    Google Scholar 

  12. Barry J, Byrne G (2002) The mechanisms of chip formation in machining hardened steels. Trans ASME J Manuf Sci Eng 124, 528–535.

    Article  Google Scholar 

  13. Davies MA, Burns TJ, Evans CJ (1997) On the dynamics of chip formation in machining hard metals. Ann CIRP 46/1, 25–30.

    Google Scholar 

  14. Davies MA, Chou CJ, Evans CJ (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. Ann CIRP 45/1, 77–82.

    Google Scholar 

  15. Poulachon G, Moisan A, Jawahir IS (2001) On modelling the influence of thermo-mechanical behavior in chip formation during hard turning of 100Cr6 bearing steel. Annals CIRP 50/1, 31–36.

    Google Scholar 

  16. Shaw MC, A Vyas (1993) Chip formation in the machining of hardened steel, Ann CIRP 42/1, 29–33.

    Google Scholar 

  17. König W, Klocke F (1997) Fertigungsverfahren 1. Drehen, Fräsen, Bohren, Springer, Berlin.

    Google Scholar 

  18. König W, Berktold A, Koch KF (1993) Turning versus grinding-a comparison of surface integrity aspects and attainable accuracies. Ann CIRP 42/1, 39–43.

    Google Scholar 

  19. Kishawy HA, Elbestawi MA (1999) Effects of process parameters on material side flow during hard turning. Int J Mach Tools Manuf 39, 1017–1030.

    Article  Google Scholar 

  20. Ueda T Huda M Al, Yamada K, Nakayama K (1999) Temperature measurement of CBN tool in turning of high hardness steel. Ann CIRP, 48/1, 63–66.

    Google Scholar 

  21. Wang JY, Liu CR (1999) The effect of tool flank wear on the heat transfer, thermal damage and cutting mechanics in finish hard turning. Ann CIRP, 48/1, 53–58.

    Google Scholar 

  22. Dewes RC, Ng E, Chua KS, Newton PG, Aspinwall DK (1999) Temperature measurement when high speed machining hardened moul/die steel. J Mater Process Technol 92–93, 293–301.

    Google Scholar 

  23. Chou YK, Song H (2004) Tool nose radius effects on finish hard turning. J Mater Process Technol 148, 259–268.

    Article  Google Scholar 

  24. Grzesik W, Krol S, Wanat T, Zalisz Z (2007) Wear behaviour of mixed ceramic tools and deterioration of surface finish in the machining of a hardened alloy steel, Proceedings of the 4th International Conference on Advances in Production Engineering, Warsaw, Poland, 267–274.

    Google Scholar 

  25. Chou YK, Evans ChJ (1997) Tool wear mechanism in continuous cutting of hardened tool steels. Wear 212, 59–65.

    Article  Google Scholar 

  26. Mamalis AG, Branis AS, Manolakos DE (2002) Modelling of precision hard cutting using implicit finite element method. J Mater Proces Technol 123, 464–475.

    Google Scholar 

  27. Huang Y, Liang SY (2003) Cutting forces modelling considering the effect of tool thermal property-application to CBN hard turning. Int J Mach Tools Manuf 43, 307–475.

    Google Scholar 

  28. Wen Q, Guo YB, Todd BA (2006) An adaptive FEA method to predict surface quality in hard machining. J Mater Process Technol 173, 21–28.

    Article  Google Scholar 

  29. Guo YB, Yen DW (2004) Hard turning versus grinding-the effect of process-induced residual stress on rolling contact. Wear 256, 393–399.

    Article  Google Scholar 

  30. Özel T, Karpat Y, Figueira L, Davim JP (2007) Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. J Mater Process Technol 189, 192–198.

    Article  Google Scholar 

  31. Umbrello D, Ambrogio G, Filice L, Shivpuri R (2007) An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. J Mater Process Technol 189, 143–152.

    Google Scholar 

  32. Ng EG, Aspinwall DK (2002) Modelling of hard part machining. J Mater Process Technol 127, 222–229.

    Article  Google Scholar 

  33. Grzesik W, Wanat T (2006) Surface finish generated in hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts. Int J Mach Tools Manuf 46, 1988–1995.

    Google Scholar 

  34. Grzesik W, Wanat T (2005) Hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts. Trans NAMRI/SME 33, 9–16.

    Google Scholar 

  35. Rech J, Moisan A (2003) Surface integrity in finish hard turning of case-hardened steels. Int J Mach Tools Manuf 43, 543–550.

    Article  Google Scholar 

  36. Lima JG, Avila RF, Abrao AM, Faustino M, Davim JP (2005) Hard turning: AISI 4340 high strength alloy steel and AISI D2 cold work tool steel. J Mater Process Technol 169, 388–395.

    Article  Google Scholar 

  37. Hashimoto F, Melkote SN, Singh R, Kalil R (2007) Effect of finishing methods in surface characteristics and performance of precision components in rolling/sliding contact, Proceedings of the 10th CIRP International Workshop on Modeling of Machining Operations, Reggio Calabria, Italy, 21–26.

    Google Scholar 

  38. Dahlman P, Gunnenberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147, 181–184.

    Article  Google Scholar 

  39. Liu M, Takagi JI, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150, 234–241.

    Google Scholar 

  40. Zhou JM, Anderson M, Ståhl JE (2004) Identification of cutting errors in precision machining hard turning process. J Mater Process Technol 153–154, 746–750.

    Google Scholar 

  41. Chou YK, Evans ChJ (1998) Process effects on white layer formation in hard turning. Trans NAMRI/SME 26, 117–122.

    Google Scholar 

  42. Hashimoto F, Guo YB, Warren AW (2006) Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. Ann CIRP 55/1, 81–84.

    Article  Google Scholar 

  43. Hard broaching, www.faessler-ag.ch (accessed 2006).

    Google Scholar 

  44. Huddle D (2002) Plunge turning can be a cost-effective grinding alternative. Manuf Eng 128/4, 76–81. CIRP Ann 55/1 (2006) pp. 81–84.

    Google Scholar 

  45. Mickelson D (2007) Guide to Hard Milling & High Speed Machining. Industrial, New York, NY.

    Google Scholar 

  46. Kress D (2001) Erfolge furs Hartreiben und Hartfräsen. Werkstatt und Betrieb 133/1–2, 64–65.

    Google Scholar 

  47. Klocke F, Kratz H (2005) Advanced tool edge geometry for high precision hard turning. Annals CIRP 54/1, 47–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Grzesik, W. (2008). Machining of Hard Materials. In: Machining. Springer, London. https://doi.org/10.1007/978-1-84800-213-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-213-5_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-212-8

  • Online ISBN: 978-1-84800-213-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics