Skip to main content
Book cover

Machining pp 271–297Cite as

Micro and Nanomachining

  • Chapter

Abstract

Recent advances in miniaturization have led to the development of microscale components, usually in silicon. However, components made from engineering materials require shaping processes other than those established for processing silicon. Therefore, traditional machining processes require further development in order to machine components that are fit for purpose at the micro and nanoscales. This chapter provides a timely review of the current developments and recent advances in the area of micro and nanomachining.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backer WR, Marshall ER, Shaw MC (1952) Trans ASME 74: 61.

    Google Scholar 

  2. Taniguchi N (1994) Precis Eng 16: 5–24.

    Article  Google Scholar 

  3. Shaw MC (1952) J Franklin Inst 254(2): 109.

    Article  Google Scholar 

  4. Heidenreich RO, Shockley W (1948) Report on Strength of Solids, Phys. Soc. of London, 57.

    Google Scholar 

  5. Ernst HJ, Merchant ME (1941) Trans Am Soc Metals 29: 299.

    Google Scholar 

  6. Merchant ME (1945) J Appl Phys 16: 267–275.

    Article  Google Scholar 

  7. Piispanen V (1937) Teknillinen Aikakaushehti (Finland) 27: 315.

    Google Scholar 

  8. Merchant ME (1950) Machining Theory and Practice. Am Soc Metals 5–44.

    Google Scholar 

  9. Merchant ME (1945) J Appl Phys 16: 318–324.

    Article  Google Scholar 

  10. Barrett CS (1943) Structure of Metals. McGraw Hill, NY, p. 295.

    Google Scholar 

  11. Bridgman PW (1952) Studies in Large Plastic Flow and Fracture. McGraw Hill, NY.

    MATH  Google Scholar 

  12. Langford G, Cohen M (1969) Trans ASM 62: 623.

    Google Scholar 

  13. V. Piispanen (1948) J Appl Phys 19: 876.

    Article  Google Scholar 

  14. Blazynski TZ, Cole JM (1960) Proc Inst Mech Engrs 1(74): 757.

    Google Scholar 

  15. Shaw MC (1950) J Appl Phys 21: 599.

    Article  Google Scholar 

  16. Walker TJ (1967) PhD Dissertation, Carnegie-Mellon University, PA.

    Google Scholar 

  17. Walker TJ, Shaw MC (1969) Advances in Machine Tool Design and Research. Pergamon pp. 241–252.

    Google Scholar 

  18. Usui E, Gujral A, Shaw MC (1960) Int J Mach Tools Res 1: 187–197.

    Article  Google Scholar 

  19. Vyas A, Shaw MC (1999) Trans ASME-J Mech Sci 21(1): 63–72.

    Google Scholar 

  20. Eugene F (1952) Ann CIRP 52(11): 13–17.

    Google Scholar 

  21. Shaw MC (1980) Int J Mech Sci 22: 673–686.

    Article  Google Scholar 

  22. Kwon KB, Cho DW, Lee SJ, Chu CN (1999) Ann CIRP 47(1): 43–46.

    Article  Google Scholar 

  23. Eyring H, Ree T, Harai N (1958) Proc Nat Acad Sci 44: 683.

    Article  Google Scholar 

  24. Eyring H, Ree T (1961) Proc Nat Acad Sci 47: 526–537.

    Article  Google Scholar 

  25. Eyring H, Jhon MS (1969) Significant Theory of Liquids. Wiley, NY.

    Google Scholar 

  26. Kececioglu D (1958) Trans ASME 80: 149–168.

    Google Scholar 

  27. Kececioglu D (1958) Trans ASME 80: 541–546.

    Google Scholar 

  28. Kececioglu D (1960) Trans ASME J Eng Ind 82: 79–86.

    Google Scholar 

  29. Anderson TL (1991) Fracture Mechanics. CRC, Florida.

    Google Scholar 

  30. Zhang B, Bagchi A (1994) Trans ASME J Eng Ind 116: 289.

    Article  Google Scholar 

  31. Argon AS, Im J, Safoglu R (1975) Metall Trans 6A: 825.

    Google Scholar 

  32. Komanduri R, Brown RH (1967) Metals Mater 95: 308.

    Google Scholar 

  33. Drucker DC (1949) J Appl Phys 20: 1.

    Article  Google Scholar 

  34. Fleck NA, Muller GM, Ashby MF, Hutchinson JM (1994) Acta Metall Materialia 41(10): 2855.

    Google Scholar 

  35. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Acta Metall Materialia 41 (10): 2855.

    Article  Google Scholar 

  36. Ma Q, Clarke DR (1995) J Mater Res 46(3): 477.

    Google Scholar 

  37. Nix WD, Gao H (1998) J Mech Phys Solids 1(4): 853.

    Google Scholar 

  38. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) J Mech Phys Solids 47: 1239.

    Article  MathSciNet  MATH  Google Scholar 

  39. Dinesh D, Swaminathan S, Chandrasekar S, Farris TN (2001) Proc ASME-IMECE, NY: 1–8.

    Google Scholar 

  40. Committee on Technology National Science and Technology Council (2000) “National Nanotechnology initiative: Leading to the next industrial revolution, Washington D.C.

    Google Scholar 

  41. Snowdon K, McNeil C, Lakey J (2001) Nanotechnology for MEMS components. mstNews 3, 9–10.

    Google Scholar 

  42. EI-Fatatry A, Correial A (2003) Nanotechnology in microsystems: potential influence for transmission systems and related applications. mstNews 3: 25–26.

    Google Scholar 

  43. Werner M, Köhler T, Grünwald W (2001) Nanotechnology for applications in microsystems. mstNews 3: 4–7.

    Google Scholar 

  44. El-Hofy H, Khairy A, Masuzawa T, McGeough J (2002) Introduction. In: McGeough J eds. Micromachining of Engineering Materials. Marcel Dekker, New York, NY.

    Google Scholar 

  45. Donaldson R, Syn C, Taylor J, Ikawa N, Shimada S (1987) Minimum thickness of cut in diamond turning of electroplated copper. UCRL-97606.

    Google Scholar 

  46. Stephenson DJ, Veselovac D, Manley S, Corbett J (2001) Ultra-precision grinding of hard steels. Precis Eng 15: 336–345.

    Article  Google Scholar 

  47. Rübenach O, Micro technology – applications and trends. Euspen online traininglecture.http://www.euspen.org/training/lectures/course2free2view/02MicroTechApps/demolecture.asp (accessed July 2007).

    Google Scholar 

  48. http://www.lfm.uni-bremen.de/html/res/res001/res108.html (accessed July 2007).

    Google Scholar 

  49. Weck M (2000) Ultraprecision machining of microcomponents. Machine Tools 1: 113–122.

    Google Scholar 

  50. Schütze A, Lutz-Günter J (2003) Nano sensors and micro integration. mstNews 3: 43–45.

    Google Scholar 

  51. EI-Fatatry A, Correial A (2003) Nanotechnology in Microsystems: potential influence for transmission systems and related applications. mstNews 3: 25.

    Google Scholar 

  52. Ikawa N, Donaldson R, Komanduri R, König W, Mckeown PA, Moriwaki T, Stowers I (1991) Ultraprecision metal cutting – the past, the present and the future. Ann CIRP 40(2): 587–594.

    Google Scholar 

  53. Shaw MC (1996) Principles of Abrasive Processing. Oxford University Press, New York, NY.

    Google Scholar 

  54. Komanduri R, Chandrasekaran, Raff L (1998) Effects of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219: 84–97.

    Article  Google Scholar 

  55. Luo X, Cheng K, Guo X, Holt R (2003) An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int J Prod Res 41 (7): 1449–1465.

    Article  Google Scholar 

  56. Taniguchi N (1996) Nanotechnology. Oxford University Press, New York, NY.

    Google Scholar 

  57. Dow T, Miller E, Garrard K (2004) Tool force and deflection compensation for small milling tools. Precis Eng 28 (1): 31–45.

    Article  Google Scholar 

  58. Cheng K, Luo X, Ward R, Holt R (2003) Modelling and simulation of the tool wear in nanometric cutting. Wear 255: 1427–1432.

    Article  Google Scholar 

  59. Shimada S (2002) Molecular dynamics simulation of the atomic processes in microcutting. In McGeough J (ed.) Micromachining of Engineering Materials. Marcel Dekker, New York, NY, pp. 63–84.

    Google Scholar 

  60. Nakazawa H (1994) Principles of Precision Engineering. Oxford University Press, New York, NY.

    Google Scholar 

  61. Lee W, Cheung CA (2001) Dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. Int J Mech Sci 43: 961–991.

    Article  MATH  Google Scholar 

  62. Corbett J (2002) Diamond Micromachining. In McGeough J (ed.) Micromachining of Engineering Materials. Marcel Dekker, New York, NY, pp. 125–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Jackson, M. (2008). Micro and Nanomachining. In: Machining. Springer, London. https://doi.org/10.1007/978-1-84800-213-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-213-5_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-212-8

  • Online ISBN: 978-1-84800-213-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics