Skip to main content

Finite Element Modeling of Metal Forming Processes Using Eulerian Formulation

  • Chapter
  • 3065 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

In Chapter 3 we discussed two methods of formulating a metal forming process—updated Lagrangian formualtion and Eulerian formulation. Eulerain formulation is convenient for processes like rolling, wire drawing, extrusion etc., where there is a continuous flow of material and we can concentrate on a region in space for the analysis purposes. The fixed region in the space is called control volume. The material can be considered as a fluid passing through the control volume. Therefore, this formulation is also called flow formulation. In this formulation, we attempt to find the velocity and pressure (negative of hydrostatic stress) field throughout the region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.9 References

  1. Reddy, J.N. (1993), An Introduction to the Finite Element Method, second edition, McGraw-Hill, New York.

    Google Scholar 

  2. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, third edition, John Wiley & Sons, New York.

    MATH  Google Scholar 

  3. Stoud, A.H. and Secrest, D. (1966), Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cillfs, NJ.

    Google Scholar 

  4. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall of India, New Delhi.

    Google Scholar 

  5. Karaman, T. von (1925), On the theory of rolling, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 5, pp. 139–141.

    Google Scholar 

  6. Orowan, E. (1943), The calculation of roll pressure in hot and cold flat rolling, Proceedings of the Institution of Mechanical Engineers, Vol. 150, pp. 140–167.

    Article  Google Scholar 

  7. Bland, D.R. and Ford, H. (1948), The calculation of roll force and torque in cold strip rolling with tensions, Proceedings of the Institution of Mechanical Engineers, Vol. 159, pp. 144–153.

    Article  Google Scholar 

  8. Bland, D.R. and Ford, H. (1952), An approximate treatment of the elastic compression of the strip in cold rolling, Journal of Iron and Steel Institute, Vol. 171, pp. 245–249.

    Google Scholar 

  9. Bland, D.R. and Sims, R.B. (1953), A note on the theory of rolling with tensions, Proceedings of the Institution of Mechanical Engineers, Vol. 167, pp. 371–374.

    Article  Google Scholar 

  10. Alexander, J.M. (1972), On the theory of rolling, Proceedings of Royal Society of London, Vol. 326 A, pp. 535–563.

    MATH  Google Scholar 

  11. Firbank, T.C. and Lancastar, P.R. (1965), A suggested slip-line field for cold rolling with slipping friction, International Journal of Mechanical Sciences, Vol. 7, pp. 847–852.

    Article  Google Scholar 

  12. Collins, I.F. (1969), Slip-line field solutions for compression and rolling with slipping friction, International Journal of Mechanical Sciences, Vol. 11, pp. 971–978.

    Article  Google Scholar 

  13. Thomson, P.F. and Brown, J.H. (1982), A study of deformation during cold rolling using visioplasticity, International Journal of Mechanical Sciences, Vol. 24, pp. 559–576.

    Article  Google Scholar 

  14. Johnson, W. and Kudo, H. (1960), The use of upper-bound solutions for the determination of temperature distributions in fast hot rolling and axi-symmetric extrusion processes, International Journal of Mechanical Sciences, Vol. 1, pp. 175–191.

    Article  Google Scholar 

  15. Avitzur, B. (1964), An upper bound approach to cold strip rolling, Transaction of ASME, Ser. B 86, pp. 31–48.

    Google Scholar 

  16. Martins, P.A.F. and Barata Marques, M.J.M. (1999), Upper bound analysis of plane strain rolling using a flow function and the weighted residual method, International Journal for Numerical Methods in Engineering, Vol. 44, pp. 1671–1683.

    Article  MATH  Google Scholar 

  17. Zienkiwicz, O.C., Jain, P.C. and Onate, E. (1978), Flow of solids during forming and extrusion: some aspects of numerical solutions, International Journal of Solids and Structures, Vol. 14, pp. 15–38.

    Article  Google Scholar 

  18. Mori, K., Osakada, K. and Oda, T. (1982), Simulation of plane strain rolling by rigid-plastic finite element method, International Journal of Mechanical Sciences, Vol. 24, pp. 519–527.

    Article  Google Scholar 

  19. Li, G.J. and Kobayashi, S. (1982), Rigid-plastic finite element analysis of plane-strain rolling, Transaction of ASME, Journal of Engineering for Industry, Vol. 104, pp. 55–64.

    Article  Google Scholar 

  20. Hwu, Y.G. and Lenard, J.G. (1988), A finite element study of flat rolling, ASME Journal of Engineering Materials and Technolgy, Vol. 110, pp. 22–27.

    Google Scholar 

  21. Prakash, R.S., Dixit, P.M. and Lal, G.K. (1995), Steady-state plane-strain cold rolling of a strain-hardening material, Journal of Materials Processing Technology, Vol. 52, pp. 338–358.

    Article  Google Scholar 

  22. Dixit, U.S. and Dixit, P.M., 1995, An analysis of the steady-state wire drawing of strain-hardening materials. Journal of Materials Processing Technology, vol. 47, pp. 201–229.

    Article  Google Scholar 

  23. Chandra, S. and Dixit, U.S., 2004, A rigid-plastic finite element analysis of temper rolling process, Journal of Materials Processing Technology, Vol. 152, pp. 9–16.

    Article  Google Scholar 

  24. Al-Salehi, F.A.R., Firbank, T. C. and Lancaster P.R., 1973, An experimental determination of the roll pressure distributions in cold rolling, International Journal of Mechanical Sciences, Vol. 15, pp. 693–700.

    Article  Google Scholar 

  25. Shida, S. and Awazuhara, H., 1973, Rolling load and torque in cold rolling, Journal of the Japan Society for Technology of Plasticity. Vol.14, pp. 267–278.

    Google Scholar 

  26. Maniatty, A.M. (1994), Predicting residual stresses in steady-state forming processes, Computing Systems in Engineering, Vol. 5, pp. 171–177.

    Article  Google Scholar 

  27. Collins, I.F. (1969), The upper bound theorem for rigid/plastic solids generalized to include Coulomb friction, Journal of Mechanics and Physics of Solids, Vol. 17, pp. 323–338.

    Article  Google Scholar 

  28. Chakrabarty, J. (1998), Theory of Plasticity, McGraw-Hill Book Company, Singapore.

    Google Scholar 

  29. Roychoudhari, R. and Lenard, J.G., 1984, A mathematical model of cold rolling-experimental substantiation, Proceedings of International Confrence on Technology of Plasticity Tokyo, pp. 1138–1145.

    Google Scholar 

  30. Michell, J.H., 1900, Some elementary distribution of stresses in three dimensions, Proceedings of London Mathematical Society, Vol. 32, pp. 23–35.

    Article  Google Scholar 

  31. Mori, K., Nakadoi, K., Fukuda, M., 1986, Coupled analysis of steady state forming processes with elastic tools, NUMIFORM, pp. 237–242, Balkema, Rotterdam.

    Google Scholar 

  32. Fleck, N.A., Johnson, K.L., Mear, M.E. and Jhang, L.C. (1992), Cold rolling of foil, Proceedings of the Institution of Mechanical Engineers, Vol. 206, pp.119–131.

    Article  Google Scholar 

  33. Le, H.R. and Sutcliffe, M.P.F. (2001), A robust model for rolling of thin strip and foil, International Journal of Mechanical Sciences, Vol. 43, pp. 1405–1419.

    Article  MATH  Google Scholar 

  34. Kumar, D. and Dixit, U.S. (2006), A slab method study of strain hardening and friction effects in cold foil rolling process, Vol. 171, Journal of Materials Processing Technology, pp. 331–340.

    Article  Google Scholar 

  35. Deb, K., 1995, Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall India, New Delhi.

    Google Scholar 

  36. Zyczkowski, M., 1981, Combined loadings in the theory of plasticity, pp. 288–289, PWN-Polish Scientific, Warsaw.

    MATH  Google Scholar 

  37. Wistreich, J.G., 1955, Investigation of the mechanics of wire drawing, Proceedings of the Institution of Mechanical Engineers, Vol. 169, pp. 654–665.

    Article  Google Scholar 

  38. Majors, H. (1956), Studies in cold-drawing, Transaction of ASME, Vol. 78, pp. 79–87.

    Google Scholar 

  39. Cook, P.M. and Wistreich, J.G. (1952), Measurement of die pressure in wire drawing by photo-elastic methods, Journal of Applied Physics, Vol. 3, pp. 159–165.

    Google Scholar 

  40. Thomsen, E.G., Yang, C.T. and Bierbower, T.B. (1959), An experimental investigation of the mechanics of plastic deformation of metals, University of California (Berkeley), Publication in Engineering, Vol. 5, pp. 89–144.

    Google Scholar 

  41. Hoffman, O. and Sachs, G. (1953), Introduction to the theory of plasticity for engineers, McGraw-Hill Book Company, New York.

    Google Scholar 

  42. Siebel, E. (1947), Derderzeitige Stand der Erkenntnisse über die Mechanischen Vorgange beim Drahtziehen, Stahl Und Eisen, Vol. 66–67, pp. 171–180.

    Google Scholar 

  43. Avitzur, B. (1968), Metal Forming: Process and Analysis, McGraw-Hill Book Company, New York.

    Google Scholar 

  44. Avitzur, B. (1963) Analysis of wire drawing and extrusion through conical dies of small cone angle. Transaction of ASME, Journal of Engineering for Industry, Vol. 85, pp. 89–96.

    Google Scholar 

  45. Avitzur, B. (1964), Analysis of wire Drawing and extrusion through conical dies of large cone angle, Transaction of ASME, Journal of Engineering for Industry, Vol. 86, pp. 305–316.

    Google Scholar 

  46. Avitzur, B. (1967), Strain-hardening and strain-rate effects in plastic flow through conical converging dies, Transaction of ASME, Journal of Engineering for Industry, Vol. 89, pp. 556–562.

    Google Scholar 

  47. Avitzur, B. (1968), Analysis of central bursting defects in extrusion and wire drawing, Transaction of ASME, Journal of Engineering for Industry, Vol. 90, pp. 79–91.

    Google Scholar 

  48. Chen, C.C., Oh S.I. and Kobayashi, S., 1979, Ductile fractures in axisymmetric extrusion and drawing; Part1: Deformation Mechanics of Extrusion and Drawing, Part2: Workability in extrusion and drawing, Transaction of ASME, Journal of Engineering for Industry, Vol. 101, pp. 23–44.

    Google Scholar 

  49. Chevalier, L. (1992), Prediction of defects in metal forming: application to wire drawing, Journal of Materials Processing Technology, Vol. 32, pp. 145–153.

    Article  Google Scholar 

  50. Dixit, U.S. and Dixit, P.M. (1995), An analysis of the steady-state wire drawing of strain-hardening materials. Journal of Materials Processing Technology, vol. 47, pp. 201–229.

    Article  Google Scholar 

  51. Gifford, R.B., Bandar, A.R., Coulter, J.P. and Misiolek, W.Z. (2004), The analysis and control of micro-hardness distribution during wire drawing, Transaction of ASME, Journal of Manufacturing Science and Engineering, Vol. 126, No. 2, pp. 247–254.

    Article  Google Scholar 

  52. Zhengyi, J., Shangwu, X., Xianghua, L., Guodong, W. and Qiang, Z. (1998), 3-D rigid-plastic FEM analysis of the rolling of a strip with local residual deformation, Journal of Materials Processing Technology, Vol. 79, pp. 109–112.

    Article  Google Scholar 

  53. Jiang, Z.Y. and Tieu, A.K. (2001), Modeling of the rolling processes by a 3-D rigid plastic/visco-plastic finite element method with shifted ICCG method, Computers & Structures, Vol. 79, pp. 2727–2740.

    Article  Google Scholar 

  54. Dixit, U.S. and Dixit, P.M. (1997), Finite-element analysis of flat rolling with inclusion of anisotropy, International Journal of Mechanical Sciences, Vol. 39, pp. 1237–1255.

    Article  MATH  Google Scholar 

  55. Dixit, U.S. and Dixit, P.M. (1997), A study on residual stresses in rolling, International Journal of Machine Tools & Manufacture, Vol. 37, pp. 837–853.

    Article  Google Scholar 

  56. Thompson, E.G. and Yu, S. (1990), A flow formulation for rate equilibrium equations, International Journal for Numerical Methods in Engineering, Vol. 30, pp. 1619–1632.

    Article  Google Scholar 

  57. Maniatty, A.M., Dawson, P.R. and Weber, G.G. (1991), An Eulerian elastoviscoplastic formulation for steady-state forming processes, International Journal of Mechanical Sciences, Vol. 33, pp. 361–377.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Finite Element Modeling of Metal Forming Processes Using Eulerian Formulation. In: Modeling of Metal Forming and Machining Processes. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84800-189-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-189-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-188-6

  • Online ISBN: 978-1-84800-189-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics