Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 1987;84(15):5449–5453.

    Article  PubMed  CAS  Google Scholar 

  2. Tang YQ, Yuan J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286(5439):498–502.

    Article  PubMed  CAS  Google Scholar 

  3. Selsted ME, Harwig SS. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem 1989;264(7): 4003–4007.

    PubMed  CAS  Google Scholar 

  4. Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 1985;76(4):1427–1435.

    Article  PubMed  CAS  Google Scholar 

  5. Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 1992;267(32):23216–23225.

    PubMed  CAS  Google Scholar 

  6. Jones DE, Bevins CL. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 1993;315(2):187–192.

    Article  PubMed  CAS  Google Scholar 

  7. Quayle AJ, Porter EM, Nussbaum AA, et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 1998;152(5):1247–1258.

    PubMed  CAS  Google Scholar 

  8. Bastian A, Schafer H. Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 2001;101(1–3):157–161.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L, Yu W, He T, et al. Contribution of human alpha-defensin 1, 2, and 3 to the antiHIV-1 activity of CD8 antiviral factor. Science 2002;298(5595):995–1000.

    Article  PubMed  CAS  Google Scholar 

  10. Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko E V, Voitenok NN. Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 2000;11(2):257–266.

    PubMed  CAS  Google Scholar 

  11. Tang YQ, Selsted ME. Characterization of the disulfide motif in BNBD-12, an antimicrobial betadefensin peptide from bovine neutrophils. J Biol Chem 1993;268(9):6649–6653.

    PubMed  CAS  Google Scholar 

  12. Tsutsumi-Ishii Y, Nagaoka I. Modulation of human beta-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 2003;170(8):4226–4236.

    PubMed  CAS  Google Scholar 

  13. Nizet V, Ohtake T, Lauth X, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001;414(6862):454–457.

    Article  PubMed  CAS  Google Scholar 

  14. Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human betadefensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001;276(8):5707–5713.

    Article  PubMed  CAS  Google Scholar 

  15. Sorensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T. Differential regulation of betadefensin expression in human skin by microbial stimuli. J Immunol 2005;174(8):4870–4879.

    PubMed  CAS  Google Scholar 

  16. Garcia JR, Krause A, Schulz S, et al. Human betadefensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 2001;15(10):1819–1821.

    PubMed  CAS  Google Scholar 

  17. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 1989;84(2):553–561.

    Article  PubMed  CAS  Google Scholar 

  18. Wimley WC, Selsted ME, White SH. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 1994; 3(9):1362–1373.

    Article  PubMed  CAS  Google Scholar 

  19. Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest 1991;88(1):93–100.

    Article  PubMed  CAS  Google Scholar 

  20. Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI. Retrocyclin, an antiretroviral theta-defensin, is a lectin. J Immunol 2003;170(9):4708–4716.

    PubMed  CAS  Google Scholar 

  21. Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 1996;271(45):28375–28381.

    Article  PubMed  CAS  Google Scholar 

  22. Sorensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001;97(12):3951–3959.

    Article  PubMed  CAS  Google Scholar 

  23. Cowland JB, Johnsen AH, Borregaard N. hCAP18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 1995;368(1):173–176.

    Article  PubMed  CAS  Google Scholar 

  24. Braff MH, Di NA, Gallo RL. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol 2005;124(2):394–400.

    Article  PubMed  CAS  Google Scholar 

  25. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 2002;119(5):1090– 1095.

    Article  PubMed  CAS  Google Scholar 

  26. Dorschner RA, Lin KH, Murakami M, Gallo RL. Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res 2003;53(4):566–572.

    Article  PubMed  CAS  Google Scholar 

  27. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 1998;42(9):2206–2214.

    PubMed  CAS  Google Scholar 

  28. 28 Dorschner RA, Pestonjamasp VK, Tamakuwala S, et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 2001;117(1):91–97.

    Article  PubMed  CAS  Google Scholar 

  29. Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 2004;172(5):3070–3077.

    PubMed  CAS  Google Scholar 

  30. Lopez-Garcia B, Lee PH, Yamasaki K, Gallo RL. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 2005;125(1):108–115.

    Article  PubMed  CAS  Google Scholar 

  31. Howell MD, Wollenberg A, Gallo RL, et al. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 2006;117(4): 836–841.

    Article  PubMed  CAS  Google Scholar 

  32. Heilborn JD, Nilsson MF, Kratz G, et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 2003;120(3):379–389.

    Article  PubMed  CAS  Google Scholar 

  33. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25–dihydroxyvitamin D3. FASEB J 2005;19(9):1067–1077.

    Article  PubMed  CAS  Google Scholar 

  34. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006;311(5768):1770–1773.

    Article  PubMed  CAS  Google Scholar 

  35. Koczulla R, von DG, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP18. J Clin Invest 2003;111(11):1665–1672.

    Article  PubMed  CAS  Google Scholar 

  36. Clayberger C, Krensky AM. Granulysin. Curr Opin Immunol 2003;15(5):560–565.

    Article  PubMed  CAS  Google Scholar 

  37. Pena SV, Krensky AM. Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin Immunol 1997;9(2):117–125.

    Article  PubMed  CAS  Google Scholar 

  38. Stenger S, Hanson DA, Teitelbaum R, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998;282(5386):121–125.

    Article  PubMed  CAS  Google Scholar 

  39. Hanson DA, Kaspar AA, Poulain FR, Krensky AM. Biosynthesis of granulysin, a novel cytolytic molecule. Mol Immunol 1999;36(7):413–422.

    Article  PubMed  CAS  Google Scholar 

  40. Anderson DH, Sawaya MR, Cascio D, et al. Granulysin crystal structure and a structure-derived lytic mechanism. J Mol Biol 2003;325(2):355–365.

    Article  PubMed  CAS  Google Scholar 

  41. Ma LL, Spurrell JC, Wang JF, et al. CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J Immunol 2002;169(10):5787–5795.

    PubMed  CAS  Google Scholar 

  42. Farouk SE, Mincheva-Nilsson L, Krensky AM, Dieli F, Troye-Blomberg M. Gamma delta T cells inhibit in vitro growth of the asexual blood stages of Plasmodium falciparum by a granule exocytosisdependent cytotoxic pathway that requires granulysin. Eur J Immunol 2004;34(8):2248–2256.

    Article  PubMed  CAS  Google Scholar 

  43. Ernst WA, Thoma-Uszynski S, Teitelbaum R, et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J Immunol 2000;165(12):7102–7108.

    PubMed  CAS  Google Scholar 

  44. Hata A, Zerboni L, Sommer M, et al. Granulysin blocks replication of varicella-zoster virus and triggers apoptosis of infected cells. Viral Immunol 2001;14(2):125–133.

    Article  PubMed  CAS  Google Scholar 

  45. Wang Z, Choice E, Kaspar A, et al. Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J Immunol 2000;165(3):1486–1490.

    PubMed  CAS  Google Scholar 

  46. Deng A, Chen S, Li Q, Lyu SC, Clayberger C, Krensky AM. Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J Immunol 2005;174(9):5243–5248.

    PubMed  CAS  Google Scholar 

  47. Okada S, Li Q, Whitin JC, Clayberger C, Krensky AM. Intracellular mediators of granulysin-induced cell death. J Immunol 2003;171(5):2556–2562.

    PubMed  CAS  Google Scholar 

  48. Kaspar AA, Okada S, Kumar J, et al. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J Immunol 2001;167(1):350–356.

    PubMed  CAS  Google Scholar 

  49. McInturff JE, Wang SJ, Machleidt T, et al. Granulysinderived peptides demonstrate antimicrobial and antiinflammatory effects against Propionibacterium acnes. J Invest Dermatol 2005;125(2):256–263.

    PubMed  CAS  Google Scholar 

  50. Broome AM, Ryan D, Eckert RL. S100 protein subcellular localization during epidermal differentiation and psoriasis. J Histochem Cytochem 2003;51(5):675–685.

    PubMed  CAS  Google Scholar 

  51. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 2005;6(1):57–64.

    Article  PubMed  CAS  Google Scholar 

  52. Gort AS, Ferber DM, Imlay JA. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 1999;32(1):179–191.

    Article  PubMed  CAS  Google Scholar 

  53. Jinquan T, Vorum H, Larsen CG, et al. Psoriasin: a novel chemotactic protein. J Invest Dermatol 1996;107(1):5–10.

    Article  PubMed  CAS  Google Scholar 

  54. Hagens G, Masouye I, Augsburger E, Hotz R, Saurat JH, Siegenthaler G. Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratino-cytes. Biochem J 1999;339(pt 2):419–427.

    Article  PubMed  CAS  Google Scholar 

  55. Clohessy PA, Golden BE. Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 1995;42(5):551–556.

    Article  PubMed  CAS  Google Scholar 

  56. Murthy AR, Lehrer RI, Harwig SS, Miyasaki KT. In vitro candidastatic properties of the human neutrophil calprotectin complex. J Immunol 1993;151(11):6291–6301.

    PubMed  CAS  Google Scholar 

  57. Cole AM, Kim YH, Tahk S, et al. Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. FEBS Lett 2001;504(1–2):5–10.

    Article  PubMed  CAS  Google Scholar 

  58. Mirmohammadsadegh A, Tschakarjan E, Ljoljic A, et al. Calgranulin C is overexpressed in lesional psoriasis. J Invest Dermatol 2000;114(6):1207– 1208.

    Article  PubMed  CAS  Google Scholar 

  59. Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek B. Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol 2004;151(3):534–539.

    Article  PubMed  CAS  Google Scholar 

  60. Schittek B, Hipfel R, Sauer B, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2001;2(12):1133–1137.

    Article  PubMed  CAS  Google Scholar 

  61. Rieg S, Steffen H, Seeber S, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol 2005;174(12):8003–8010.

    PubMed  CAS  Google Scholar 

  62. Harder J, Schroder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 2002;277(48):46779–46784.

    Article  PubMed  CAS  Google Scholar 

  63. Harder J, Schroder JM. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 2005;77(4):476– 486.

    Article  PubMed  CAS  Google Scholar 

  64. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–273.

    Article  PubMed  CAS  Google Scholar 

  65. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347(15):1151–1160.

    Article  PubMed  CAS  Google Scholar 

  66. Howell MD, Novak N, Bieber T, et al. Interleukin10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 2005;125(4):738–745.

    Article  PubMed  CAS  Google Scholar 

  67. de Jongh GJ, Zeeuwen PL, Kucharekova M, et al. High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol 2005;125(6):1163–1173.

    Article  PubMed  Google Scholar 

  68. 68 Howell MD, Gallo RL, Boguniewicz M, et al. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006;24(3):341–348.

    Article  PubMed  CAS  Google Scholar 

  69. Chronnell CM, Ghali LR, Ali RS, et al. Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol 2001;117(5):1120–1125.

    Article  PubMed  CAS  Google Scholar 

  70. Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 2005;124(5):931–938.

    Article  PubMed  CAS  Google Scholar 

  71. Nagy I, Pivarcsi A, Kis K, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect 2006;8(8):2195–2205.

    Article  PubMed  CAS  Google Scholar 

  72. Trivedi NR, Gilliland KL, Zhao W, Liu W, Thiboutot DM. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol 2006;126(5):1071–1079.

    Article  PubMed  CAS  Google Scholar 

  73. Ochoa MT, Stenger S, Sieling PA, et al. T-cell release of granulysin contributes to host defense in leprosy. Nat Med 2001;7(2):174–179.

    Article  PubMed  CAS  Google Scholar 

  74. Echtermeyer F, Streit M, Wilcox-Adelman S, et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 2001;107(2): R9–R14.

    Article  PubMed  CAS  Google Scholar 

  75. Cole AM, Shi J, Ceccarelli A, Kim YH, Park A, Ganz T. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds. Blood 2001;97(1):297–304.

    Article  PubMed  CAS  Google Scholar 

  76. Tokumaru S, Sayama K, Shirakata Y, et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 2005;175(7):4662–4668.

    PubMed  CAS  Google Scholar 

  77. Aarbiou J, Verhoosel RM, Van WS, et al. Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am J Respir Cell Mol Biol 2004;30(2):193–201.

    Article  PubMed  CAS  Google Scholar 

  78. Shaykhiev R, Beisswenger C, Kandler K, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 2005;289(5):L842–L848.

    Article  PubMed  CAS  Google Scholar 

  79. Niyonsaba F, Ushio H, Nakano N, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007;127(3):594–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jalian, H.R., Kim, J. (2008). Antimicrobial Peptides. In: Gaspari, A.A., Tyring, S.K. (eds) Clinical and Basic Immunodermatology. Springer, London. https://doi.org/10.1007/978-1-84800-165-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-165-7_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-164-0

  • Online ISBN: 978-1-84800-165-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics