Skip to main content
  • Toll-like receptors (TLRs) are part of the innate immune response.

  • TLRs work through two pathways:

    Adaptor protein myeloid differentiation factor 88 (MyD88) to activate transcription factor nuclear factor B (NF- B) or activating protein-1 (AP-1)

    A lipopolysaccharide (LPS)-triggered MyD88- independent pathway that produces inflammatory cytokines

  • Multiple dermatologic diseases are found to involve TLRs, including TLR-1 (psoriasis, tuberculoid leprosy), TLR2 (acne, retinoids, lepromatous leprosy, syphilis, atopic dermatitis, Lyme disease, herpes simplex virus, candidiasis), TLR4 (Kawasaki’s disease, syphilis, candidiasis, melanoma), TLR5 (syphilis), and TLR9 (herpes simplex virus).

  • Current and future therapies and vaccines will target TLRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilu D, Sauder D. Immunomodulatory and phar-macologic properties of imiquimod. J Am Acad Dermatol 2000;43(1 pt 2):S6–11.

    Google Scholar 

  2. Fuchs E, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 1996;8(5): 271–280.

    Article  PubMed  CAS  Google Scholar 

  3. Gaspari A. Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol 2006;54(3 suppl 2):S67–80.

    Article  PubMed  Google Scholar 

  4. Beutler B. Toll-like receptors: how they work and what they do. Curr Opin Hematol 2002;9(1):2–10.

    Article  PubMed  Google Scholar 

  5. Kang S, Kauls L, Gaspari A. Toll-like receptors: Applications to dermatologic disease. J Am Acad Dermatol 2006;54(6):951–983.

    Article  PubMed  Google Scholar 

  6. Lemaitre B, Nicolas E, Michaut L, et al. The dors-oventral regulatory gene cassette Spatze/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86(6):973–983.

    Article  PubMed  CAS  Google Scholar 

  7. Armant M, Fenton M. Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 2002;3(8):reviews 3011.

    Google Scholar 

  8. Zhang D, Zhang G, Hayden M. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004;303(5663):1522–1526.

    Article  PubMed  CAS  Google Scholar 

  9. McGirt L, Beck L. Innate immune defects in atopic dermatitis. J Allergy Clin Immunol 2006;118(1): 202–208.

    Article  PubMed  CAS  Google Scholar 

  10. Sieling P, Modlin R. Toll-like receptors: mammalian “taste receptors“ for a smorgasbord of microbial invaders. Curr Opin Microbiol 2002;5(1):70–75.

    Article  PubMed  CAS  Google Scholar 

  11. Banchereau J, Steinman R. Dendritic cells and the control of immunity. Nature 1998;392(6673): 245–252.

    Article  PubMed  CAS  Google Scholar 

  12. Beg A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 2002;23(11):509–512.

    Article  PubMed  CAS  Google Scholar 

  13. Berwin B, Reed R, Nicchitta C. Virally induced lytic cell death elicits the release of immunogenic GRP94/ gp96. J Biol Chem 2001;276(21):21083–21088.

    Article  PubMed  CAS  Google Scholar 

  14. Akira S. Toll-like receptors and innate immunity. Adv Immunol 2001;78:1–56.

    Article  PubMed  CAS  Google Scholar 

  15. Hemmi H, Kaisho T, Takeuchi O, et al. Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002;3(2):196–200.

    Article  PubMed  CAS  Google Scholar 

  16. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2(8):675–680.

    Article  PubMed  CAS  Google Scholar 

  17. Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 2001;167(2):987–994.

    PubMed  CAS  Google Scholar 

  18. Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysac-charide-inducible genes. J Immunol 2001;167(10): 5887–5894.

    PubMed  CAS  Google Scholar 

  19. Sato M, Taniguchi T, Tanaka N. The interferon system and interferon regulatory factor transcription factors: studies from gene knockout mice. Cytokine Growth Factor Rev 2001;12(2–3):133–142.

    Article  PubMed  CAS  Google Scholar 

  20. Taniguchi T, Takaoka A. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 2002;14(1):111–116.

    Article  PubMed  CAS  Google Scholar 

  21. Kaisho T, Takeuchi O, Kawai T, et al. Endotoxin induced maturation of MyD88-deficient dendritic cells. J Immunol 2001;166(9):5688–5694.

    PubMed  CAS  Google Scholar 

  22. Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol 2001;166(4): 2651–2657.

    PubMed  CAS  Google Scholar 

  23. Strauss J, Kligman A. The pathologic dynamics of acne vulgaris. Arch Dermatol 1960;82:779–791.

    Google Scholar 

  24. Ingham E, Eady E, Goodwin C, et al. Pro-inflammatory levels of interleukin-1-alpha-like bioactivity are present in the majority of open comedones in acne vulgaris. J Invest Dermatol 1992;98(6):895–901.

    Article  PubMed  CAS  Google Scholar 

  25. Vowels B, Yang S, Leyden J. Induction of proin-flammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun 1995;63(8): 3158–3165.

    PubMed  CAS  Google Scholar 

  26. Nagy I, Pivarcsi A, Kis K, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect 2006;8(8):2195–2205.

    Article  PubMed  CAS  Google Scholar 

  27. Boehm K, Yun J, Strohl K, et al. Messenger RNA for the multifunctional cytokines interleukin-1alpha, interleukin-1beta, and tumor necrosis factor-alpha are present in adnexal tissues and in dermis of normal human skin. Exp Dermatol 1995;4(6):335–341.

    Article  PubMed  CAS  Google Scholar 

  28. Schroder J. Epithelial peptide antibiotics. Biochem Pharmacol 1999;57(2):121–134.

    Article  PubMed  CAS  Google Scholar 

  29. Yang D CO, Bykovskaia SN, et al. Beta-defensins: Linking innate and Adaptive immunity through dendritic and T cell CCR6. Science 1999;286:525–528.

    Article  PubMed  CAS  Google Scholar 

  30. Kim J, Ochoa M, Krutzik S, et al. Activation of tolllike receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 2002;169(3):1535–1541.

    PubMed  CAS  Google Scholar 

  31. Yang R, Mark M, Gurney A, et al. Signaling events induced by lipopolysaccharide-activated Toll-like receptor 2. J Immunol 1999;163(2):639–643.

    PubMed  CAS  Google Scholar 

  32. Vega B, Ferret C, Jomard A. Regulation of Toll-Like receptor-2 expression by Adapalene: implications for the treatment of inflammatory acne. J Invest Dermatol Abstracts 2003;121:156.

    Google Scholar 

  33. Bochud P, Hawn T, Aderem A. Cutting edge: A TollLike Receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacte-rial signaling. J Immunol 2003;170(7):3451–3454.

    PubMed  CAS  Google Scholar 

  34. Underhill D, Orzinsky A, Smith K, et al. Toll-like receptor-2 mediates mycobacteria-induced proin-flammatory signaling in macrophages. Proc Natl Acad Sci USA 1999;96(25):14459–14463.

    Article  PubMed  CAS  Google Scholar 

  35. Kang T, Chae G. Detection of Toll-like Receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol 2001;31(1):53–58.

    Article  PubMed  CAS  Google Scholar 

  36. Kang T, Yeum C, Kim B, et al. Differential production of IL-10 and IL-12 in mononuclear cells from leprosy patients with a Toll-like Receptor 2 mutation. Immunol 2004;112(4):674–680.

    Article  CAS  Google Scholar 

  37. Krutzik S, Ochoa M, Sieling P, et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nature Med 2003;9(5):525–532.

    Article  PubMed  CAS  Google Scholar 

  38. Bouis D, Popva T, Takashim A, et al. Dendritic cells phagocytose and are activated by Treponema pal-lidum. Infect Immun 2001;69(1):518–528.

    Article  PubMed  CAS  Google Scholar 

  39. Means T, Hayashi F, Smith K. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 2003;170(10):5165–5175.

    PubMed  CAS  Google Scholar 

  40. Mizel S, Honko A, Moors M, et al. Induction of mac-rophage nitric oxide production by gram-negative flagellin involves signaling via heteromeric Toll-like receptor5/Toll-like receptor4 complexes. J Immunol 2003;170(12):6217–6223.

    PubMed  CAS  Google Scholar 

  41. Leung D. Infection in atopic dermatitis. Curr Opin Pediatr 2003;15(4):399–404.

    PubMed  Google Scholar 

  42. Cho S, Strickland I, Tomkinson A, et al. Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol 2001;116(5):658–663.

    Article  PubMed  CAS  Google Scholar 

  43. Ong P, Ohtake T, Brandt C. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347(15):1151–1160.

    Article  PubMed  CAS  Google Scholar 

  44. Birchler T, Seibel R, Buchner K, et al. Human Tolllike receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur J Immunol 2001;31(11): 3131–3137.

    Article  PubMed  CAS  Google Scholar 

  45. Biragyn A, Ruffini P, Leifer C, et al. Tolllike receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002;298(5595): 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  46. Werfel T, Heeg K, Neumaier M, et al. R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol 2004;113(3):565–567.

    Article  PubMed  CAS  Google Scholar 

  47. Ou L-S, Goleva E, Hall C, et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol 2004;113(4):756–763.

    Article  PubMed  CAS  Google Scholar 

  48. Miller L, O'Connell R, Gutierrez M, et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 2006;24(1): 79–91.

    Article  PubMed  CAS  Google Scholar 

  49. Piggott D,EisenbBarth S, Xu L. MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 2005;115(2):459–467.

    PubMed  CAS  Google Scholar 

  50. Baker B, Ovigne J-M, Powles A, et al. Normal keratinocytes express Toll-Like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 2003;148(4): 670–679.

    Article  PubMed  CAS  Google Scholar 

  51. Curry J, Qin J-Z, Bomish B, et al. Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 2003;127(2):178–186.

    PubMed  CAS  Google Scholar 

  52. Litjens N, Rademaker M, Ravensbergen B, et al. Monomethylfumarate affects polarization of mono-cyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses. Eur J Immunol 2004;34(2):565–575.

    Article  PubMed  CAS  Google Scholar 

  53. Gilliet M, Conrad C, Geiges M, et al. Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 2004;140(12):1490–1495.

    Article  PubMed  CAS  Google Scholar 

  54. Brandtzaeg P, Kierulf P, Gaustad P, et al. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect 1989;159(2):195–204.

    CAS  Google Scholar 

  55. Ingalls R, Lien E, Golenbock D. Differential roles of TLR2 and TLR4 in the host response to gram-negative bacteria: lessons from a lipopolysaccharide-defi-cient mutant of Neisseria meningitidis. J Endotoxin Res 2000;6(5):411–415.

    PubMed  CAS  Google Scholar 

  56. Massari P, Henneke P, Ho Y, et al. Cutting edge: immune stimulation by neisserial porins is Tolllike receptor 2 and MyD88 dependent. J Immunol 2002;168(4):1533–1537.

    PubMed  CAS  Google Scholar 

  57. Al-Bader T , Christodoulides M, Heckels J, et al. Activation of human dendritic cells in modulated by components of the outer membranes of Neisseria meningitidis. Infect Immun 2003;71(10): 5590–5597.

    Article  PubMed  CAS  Google Scholar 

  58. Mullarkey M, Rose J, Bristol J, et al. Inhibition of endotoxin response by E5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J Pharm Exp Ther 2003;304(3):1093–1102.

    Article  CAS  Google Scholar 

  59. Sing A, Roggenkamp A, Geiger A, et al. Yersinia enterolitica evasion of the host innate immune response by V antigen-induced-IL-10 production of macrophages is abrogated in IL-10 deficient mice. J Immunol 2002;168(3):1315–1321.

    PubMed  CAS  Google Scholar 

  60. Sing A, Rost D, Tvardovaskia N, et al. Yersinia V-antigen exploits Toll-Like Receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 2002;196(8):1017–1024.

    Article  PubMed  CAS  Google Scholar 

  61. Haase R, Kirsching C, Sing A, et al. A dominant role of Toll-like receptor 4 in the signaling of apop-tosis in bacteria-faced macrophages. J Immunol 2003;171(8):4294–4303.

    PubMed  CAS  Google Scholar 

  62. Wang G, Li C, Zu Y, et al. The role of activation of Toll-like receptors in immunological pathogen-esis of Kawasaki disease. Zhonghua Er Ke Za Zhi 2006;44(5):333–336.

    PubMed  Google Scholar 

  63. Hirschfeld M, Kirschning C, Schwandner R, et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 1999;163(5):2382–2386.

    PubMed  CAS  Google Scholar 

  64. Cassiani-Ingoni R, Cabral E, Lunemann J, et al. Borrelia burgdorferi induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 2006;65(6):540–548.

    Article  PubMed  CAS  Google Scholar 

  65. Picard C, Puel A, Bonnet M. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003;299(5615):2076–2079.

    Article  PubMed  CAS  Google Scholar 

  66. Underhill D, Ozinsky A, Hajjar A, et al. The Tolllike receptor 2 is recruited to macrophage phago-some and discriminates between pathogens. Nature 1999;401(6755):811–815.

    Article  PubMed  CAS  Google Scholar 

  67. Tada H, Nemoto E, Shimauchi H, et al. Saccharomyces cerevisiae- and Candida albicans- derived man-nan production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 2002;46(7):503–512.

    PubMed  CAS  Google Scholar 

  68. Netea M, Van der Graaf C, Vonk A, et al. The role of Toll-like receptor (TLR 2) and TLR 4 in the host defense against disseminated candidiasis. J Infect Dis 2002;185(10):1483–1489.

    Article  PubMed  CAS  Google Scholar 

  69. Deva R, Shankaranarayanan P, Ciccoli R, et al. Candida albicans induces selectively transcriptional activation of cyclooxygenase-2 in HeLa cells: pivotal roles of toll-like receptors, p38 mitogen-acti-vated protein kinases, and NF-kappaB. J Immunol 2003;171(6):3047–3055.

    PubMed  CAS  Google Scholar 

  70. Kurt-Jones E, Chan M, Zhou S, et al. Herpes simplex virus 1 interaction with toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 2004;101:1315–1320.

    Article  PubMed  CAS  Google Scholar 

  71. Krug A, Luker G, Barchet W. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004;103(4):1433–1437.

    Article  PubMed  CAS  Google Scholar 

  72. Herbst-Kralovetz M, Pyles R. Toll-like receptors, innate immunity and HSV pathogenesis. Herpes 2006;13(2):37–41.

    PubMed  CAS  Google Scholar 

  73. Alexopoulou L, Holt A, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413(6857):732–738.

    Article  PubMed  CAS  Google Scholar 

  74. McCluskie M, Cartier J, Patrick A, et al. Treatment of intravaginal HSV-2 infection in mice: a comparison of CpG oligodeoxynucleotides and resiquimod (R-848). Antiviral Res 2006;69(2):77–85.

    Article  PubMed  CAS  Google Scholar 

  75. Ding C, Wang L, Al-Ghawi H, et al. Toll-like receptor engagement stimulates anti-snRNP autoreactive T cells for activation. Eur J Immunol 2006;36(8): 2013–2024.

    Article  PubMed  CAS  Google Scholar 

  76. Rutz M, Metzger J, Gellert T. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence-and pH- dependent manner. Eur J Immunol 2004;34(9):2541–2550.

    Article  PubMed  CAS  Google Scholar 

  77. Vollmer J, Tluk S, Schmitz C, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 2005;202(11):1575–1585.

    Article  PubMed  CAS  Google Scholar 

  78. Patole P, Pawar R, Lech M, et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol Dial Transplant 2006;21(11):3062–73.

    Article  PubMed  CAS  Google Scholar 

  79. Clarke J, Cha J, Walsh M, et al. Melanoma inhibits macrophage activation by suppressing Toll-like receptor 4 signaling. J Am Coll Surg 2005;201(3):418–425.

    Article  PubMed  Google Scholar 

  80. Molteni M, Marabella D, Orlandi C, et al. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett 2006;235(1):75–83.

    Article  PubMed  CAS  Google Scholar 

  81. Tormo D, Ferrer A, Bosch P. Therapeutic efficacy of antigen-specific vaccination and Toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res 2006;66(10):5427–5435.

    Article  PubMed  CAS  Google Scholar 

  82. Na. CpG 7909: PF 3512676, PF-3512676. Drugs in Research and Development 2006;7(5):312–316.

    Google Scholar 

  83. Deeths M, Chapman J, Dellavalle R. Treatment of patch and plaque stage mycosis fungoides with imiquimod 5% cream. J Am Acad Dermatol 2005;52(2):275–280.

    Article  PubMed  Google Scholar 

  84. Rivas J, Ullrich S. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-induced keratinocytes. An essential role for keratinocyte-derived IL-10. J Immunol 1992;149(12):3865–3871.

    PubMed  CAS  Google Scholar 

  85. Yoshikawa T, Kurimoto I, Streilein J. Tumor necrosis factor-alpha mediates ultraviolet B-enhanced expression of contact hypersensitivity. Immunology 1992;76(2):254–271.

    Google Scholar 

  86. Thatcher T, Luzina I, Fishelevich R, et al. Topical imiquimod treatment presents UV-light induced loss of contact hypersensitivity and immune tolerance. J Invest Dermatol 2006;126(4):821–831.

    Article  PubMed  CAS  Google Scholar 

  87. Gaspari A, Fleisher T, Karemer K. Impaired inter-feron production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J Clin Invest 1993;92(3): 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  88. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985;42:791–798.

    Article  PubMed  CAS  Google Scholar 

  89. Janeway C Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 1989;54(Pt 1):1–13.

    PubMed  CAS  Google Scholar 

  90. Medzhitov R, Preston-Hurlburt P, Janeway C Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388(24):394–397.

    PubMed  CAS  Google Scholar 

  91. Beutler B, Poltorak A. The sole gateway endotoxin response: how LPS was identified as TLR 4 and its role in innate immunity. Drug Metab Dispos 2001;29(4 pt 2):474–478.

    PubMed  CAS  Google Scholar 

  92. Hemmi H, Takeuchi O, Kawai T, et al. A Tolllike receptor recognizes bacterial DNA. Nature 2000;408(6813):740–745.

    Article  PubMed  CAS  Google Scholar 

  93. Ozinsky A, Underhill D, JD F, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000;97:13766–13771.

    Article  PubMed  CAS  Google Scholar 

  94. Hayashi F, Smith K, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410(6832): 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  95. Thoma-Uszynski S, Stenger S, Takeuchi O, et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001;291(5508):1544–1547.

    Article  PubMed  CAS  Google Scholar 

  96. Alexopoulou L, Thomas V, Schnare M, et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1— and TLR2— deficient mice. Nat Med 2002;8(8): 878–884.

    PubMed  CAS  Google Scholar 

  97. Pivarcsi A, Bodai L, Rethi B, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 2003;15(6):721–730.

    Article  PubMed  CAS  Google Scholar 

  98. Mempel M, Voelcker V, Kollisch G, et al. Tolllike receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 2003;121(6): 1389–1396.

    Article  PubMed  CAS  Google Scholar 

  99. Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2003;303(5663): 1526–1529.

    Article  CAS  Google Scholar 

  100. Tabeta K, Georgel P, Janssen E, et al. Toll like receptors 9 and 3 as essential components of innate immune defense against mouse cytome-galovirus infection 3. Proc Natl Acad Sci USA 2004;101(10):3516–3521.

    Article  PubMed  CAS  Google Scholar 

  101. Mitsui H, Watanabe T, Saeki H, et al. Differential expression and function of Toll-like receptors in Langerhans cells: comparison with splenic dendritic cells. J Invest Dermatol 2004;122(1): 95–102.

    Article  PubMed  CAS  Google Scholar 

  102. Bsibsi M, Persoon-Deen C, Verwer R, et al. Tolllike receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 2006;53(7):688–695.

    Article  PubMed  Google Scholar 

  103. Martin-Armas M, Simon-Santamaria J, Pettersen I. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. J Hepatol 2006;44(5):939–946.

    Article  PubMed  CAS  Google Scholar 

  104. Supajatura V, Ushio H, Nakao A. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 2002;109(10):1351–1359.

    PubMed  CAS  Google Scholar 

  105. Kurt-Jones E, Sandor F, Ortiz Y, et al. Use of murine embryonic fibroblasts to define Toll-like receptor activation and specificity. J Endotox Res 2004;10(6):419–424.

    CAS  Google Scholar 

  106. Majewska M, Szczepanik M. The role of Toll-like receptors (TLR) in innate and adaptive immune responses and their function in immune response regulation. Postepy Hig Med Dosw 2006;60: 52–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Martin, D.B., Gaspari, A.A. (2008). Toll-Like Receptors. In: Gaspari, A.A., Tyring, S.K. (eds) Clinical and Basic Immunodermatology. Springer, London. https://doi.org/10.1007/978-1-84800-165-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-165-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-164-0

  • Online ISBN: 978-1-84800-165-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics