Skip to main content

Distributed Control of Microscopic Robots in Biomedical Applications

  • Chapter
  • First Online:
Advances in Applied Self-organizing Systems

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alon, U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall, London.

    MATH  Google Scholar 

  • Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R. (2006). Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology, 2(msb4100073):E1–E14.

    Google Scholar 

  • Arbuckle, D., and Requicha, A. A. G. (2004). Active self-assembly. In Proceedings of the IEEE International Conference on Robotics and Automation, New York, pages 896–901.

    Google Scholar 

  • Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., and Shapiro, E. (2004). An autonomous molecular computer for logical control of gene expression. Nature, 429:423–429.

    Article  Google Scholar 

  • Berg, H. C. (1993). Random Walks in Biology, 2nd edition. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Berg, H. C., and Purcell, E. M. (1977). Physics of chemoreception. Biophysical Journal, 20:193–219.

    Article  Google Scholar 

  • Berna, J. et al. (2005). Macroscopic transport by synthetic molecular machines. Nature Materials, 4:704–710.

    Article  Google Scholar 

  • Bojinov, H., Casal, A., and Hogg, T. (2002). Multiagent control of modular self-reconfigurable robots. Artificial Intelligence, 142:99–120. Available as arxiv.org preprint cs.RO/0006030.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Casal, A., Hogg, T., and Cavalcanti, A. (2003). Nanorobots as cellular assistants in inflammatory responses. In Shapiro, J., editor, Proceedings of the 2003 Stanford Biomedical Computation Symposium (BCATS2003), Stanford, CA, page 62. Available at http://bcats.stanford.edu.

    Google Scholar 

  • Cavalcanti, A. and Freitas Jr., R. A. (2002). Autonomous multi-robot sensor-based cooperation for nanomedicine. International Journal of Nonlinear Sciences and Numerical Simulation, 3:743–746.

    Article  Google Scholar 

  • Collier, C. P., et al. (1999). Electronically configurable molecular-based logic gates. Science, 285:391–394.

    Article  Google Scholar 

  • Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290:1532–1535.

    Article  Google Scholar 

  • Dhariwal, A., Sukhatme, G. S., and Requicha, A. A. G. (2004). Bacterium-inspired robots for environmental monitoring. In Proceedings of the IEEE International Conference on Robotics and Automation, New York, pages 1436–1443.

    Google Scholar 

  • Drexler, K. E. (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York.

    Google Scholar 

  • Dreyfus, R. et al. (2005). Microscopic artificial swimmers. Nature, 437:862–865.

    Article  Google Scholar 

  • Freitas Jr., R. A. (1999). Nanomedicine, volume I: Basic Capabilities. Landes Bioscience, Georgetown, TX. Available at www.nanomedicine.com/NMI.htm.

    Google Scholar 

  • Freitas Jr., R. A. (2003). Nanomedicine, volume IIA: Biocompatibility. Landes Bioscience, Georgetown, TX. Available at www.nanomedicine.com/NMIIA.htm.

    Google Scholar 

  • Freitas Jr., R. A. (2006). Pharmacytes: An ideal vehicle for targeted drug delivery. Journal of Nanoscience and Nanotechnology, 6:2769–2775.

    Article  Google Scholar 

  • Fritz, J. et al. (2000). Translating biomolecular recognition into nanomechanics. Science, 288:316–318.

    Article  Google Scholar 

  • Fung, Y. C. (1997). Biomechanics: Circulation, 2nd edition. Springer, New York.

    Book  Google Scholar 

  • Galstyan, A., Hogg, T., and Lerman, K. (2005). Modeling and mathematical analysis of swarms of microscopic robots. In Arabshahi, P., and Martinoli, A., editors, Proceedings of the IEEE Swarm Intelligence Symposium (SIS2005), New York, pages 201–208.

    Google Scholar 

  • Gazi, V., and Passino, K. M. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man and Cybernetics, B34:539–557.

    Article  Google Scholar 

  • Ghosh, S., et al. (2003). Carbon nanotube flow sensors. Science, 299:1042–1044.

    Article  Google Scholar 

  • Gourley, P. L., et al. (2005). Ultrafast nanolaser flow device for detecting cancer in single cells. Biomedical Microdevices, 7:331–339.

    Article  Google Scholar 

  • Griffith, S., Goldwater, D., and Jacobson, J. M. (2005). Robotics: Self-replication from random parts. Nature, 437:636.

    Article  Google Scholar 

  • Hamad-Schifferli, K., et al. (2002). Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 415:152–155.

    Article  Google Scholar 

  • Hernandez-Ortiz, J. P., Stoltz, C. G., and Graham, M. D. (2005). Transport and collective dynamics in suspensions of confined swimming particles. Physical Review Letters, 95:204501.

    Article  Google Scholar 

  • Hogg, T. (2006). Coordinating microscopic robots in viscous fluids. Autonomous Agents and Multi-Agent Systems, 14(3):271–305.

    Article  Google Scholar 

  • Hogg, T., and Huberman, B. A. (2004). Dynamics of large autonomous computational systems. In Tumer, K., and Wolpert, D., editors, Collectives and the Design of Complex Systems, pages 295–315. Springer, New York.

    Chapter  MATH  Google Scholar 

  • Hogg, T., and Kuekes, P. J. (2006). Mobile microscopic sensors for high-resolution in vivo diagnostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2:239–247.

    Article  Google Scholar 

  • Hogg, T., and Sretavan, D. W. (2005). Controlling tiny multi-scale robots for nerve repair. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI2005), Menlo Park, CA pages 1286–1291. AAAI Press.

    Google Scholar 

  • Howard, J. (1997). Molecular motors: Structural adaptations to cellular functions. Nature, 389:561–567.

    Article  Google Scholar 

  • Janeway, C. A., et al. (2001). Immunobiology: The Immune System in Health and Disease. Garland, 5th edition, New York.

    Google Scholar 

  • Karniadakis, G. E. M., and Beskok, A. (2002). Micro Flows: Fundamentals and Simulation. Springer, Berlin.

    MATH  Google Scholar 

  • Keller, K. H. (1971). Effect of fluid shear on mass transport in flowing blood. In Proceedings of the Federation of American Societies for Experimental Biology, pages 1591–1599.

    Google Scholar 

  • Keszler, B. L., Majoros, I. J., and Baker Jr., J. R. (2001). Molecular engineering in nanotechnology: Structure and composition of multifunctional devices for medical application. In Proceedings of the Ninth Foresight Conference on Molecular Nanotechnology, Palo Alto, CA.

    Google Scholar 

  • Lahann, J., and Langer, R. (2005). Smart materials with dynamically controllable surfaces. MRS Bulletin, 30:185–188.

    Article  Google Scholar 

  • Lerman, K., et al. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7:375–393.

    Article  Google Scholar 

  • Liu, J., et al. (2006). Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology, 51:2179–2189.

    Article  Google Scholar 

  • Li, Z., et al. (2005). Silicon nanowires for sequence-specific DNA sensing: Device fabrication and simulation. Applied Physics A, 80:1257–1263.

    Article  Google Scholar 

  • Mataric, M. (1992). Minimizing complexity in controlling a mobile robot population. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, New York pages 830–835.

    Google Scholar 

  • McAdams, H. H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of the National Academy of Science USA, 94:814–819.

    Article  Google Scholar 

  • McCurdy, C. W. et al. (2002). Theory and modeling in nanoscience. workshop report, www.science.doe.gov/bes/reports/files/tmn_rpt.pdf, US Dept. of Energy.

    Google Scholar 

  • Montemagno, C. and Bachand, G. (1999). Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology, 10:225–231.

    Article  Google Scholar 

  • Morris, K. (2001). Macrodoctor, come meet the nanodoctors. The Lancet, 357:778.

    Article  Google Scholar 

  • Natterer, F. (2001). The Mathematics of Computerized Tomography. Society for Industrial and Applied Math (SIAM), ePhiladelphia.

    Book  MATH  Google Scholar 

  • Nel, A., et al. (2006). Toxic potential of materials at the nanolevel. Science, 311:622–627.

    Article  Google Scholar 

  • NIH (2003). National Institutes of Health roadmap: Nanomedicine. Available at http:// nihroadmap.nih.gov/nanomedicine/index.asp.

    Google Scholar 

  • Patolsky, F., and Lieber, C. M. (2005). Nanowire nanosensors. Materials Today, 8:20–28.

    Article  Google Scholar 

  • Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45:3–11.

    Article  Google Scholar 

  • Requicha, A. A. G. (2003). Nanorobots, NEMS and nanoassembly. Proceedings of the IEEE, 91:1922–1933.

    Google Scholar 

  • Riedel, I. H., et al. (2005). A self-organized vortex array of hydrodynamically entrained sperm cells. Science, 309:300–303.

    Article  Google Scholar 

  • Rus, D., and Vona, M. (1999). Self-reconfiguration planning with compressible unit modules. In Proceedings of the Conference on Robotics and Automation (ICRA99). New York, pages 2513–2520. IEEE.

    Google Scholar 

  • Salemi, B., Shen, W.-M., and Will, P. (2001). Hormone controlled metamorphic robots. In Proc. of the Intl. Conf. on Robotics and Automation (ICRA2001), New York, pages 4194–4199.

    Google Scholar 

  • Schrand, A. M., et al. (2007). Are diamond nanoparticles cytotoxic? Journal of Physical Chemistry B, 111:2–7.

    Article  Google Scholar 

  • Service, R. F. (2005). Nanotechnology takes aim at cancer. Science, 310:1132–1134.

    Article  Google Scholar 

  • Sheehan, P. E., and Whitman, L. J. (2005). Detection limits for nanoscale biosensors. Nano Letters, 5(4):803–807.

    Article  Google Scholar 

  • Soong, R. K., et al. (2000). Powering an inorganic nanodevice with a biomolecular motor. Science, 290:1555–1558.

    Article  Google Scholar 

  • Squires, T. M., and Quake, S. R. (2005). Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 77:977–1026.

    Article  Google Scholar 

  • Sretavan, D., Chang, W., Keller, C., and Kliot, M. (2005). Microscale surgery on axons for nerve injury treatment. Neurosurgery, 57(4):635–646.

    Article  Google Scholar 

  • Vogel, S. (1994). Life in Moving Fluids, 2nd edition. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Wang, H. et al. (2005). In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Science USA, 102:15752–15756.

    Article  Google Scholar 

  • Wang, S.-Y., and Williams, R. S., editors (2005). Nanoelectronics, volume 80. Springer. Special issue of Applied Physics A. New York.

    Google Scholar 

  • Wang, Z. L., and eSong, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312:242–246.

    Article  Google Scholar 

  • Whitesides, G. M., and Grzybowski, B. (2002). Self-assembly at all scales. Science, 295: 2418–2421.

    Article  Google Scholar 

  • Xie, X. S., Yu, J., and Yang, W. Y. (2006). Living cells as test tubes. Science, 312:228–230.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hogg, T. (2008). Distributed Control of Microscopic Robots in Biomedical Applications. In: Prokopenko, M. (eds) Advances in Applied Self-organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84628-982-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-982-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-981-1

  • Online ISBN: 978-1-84628-982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics