Skip to main content

Role of the Left Atrium

  • Chapter

Abstract

There is currently a general consensus in the literature about the definitions of diastolic dysfunction and diastolic failure, even though these concepts have only relatively recently been introduced into the clinical arena. The key to their definitions, as discussed in other chapters, is the central and predominant role played by the ventricular chamber in terms of its ability to accommodate adequate filling volume at reasonably low pressure through its capacity to rapidly relax while maintaining chamber elastic properties.1 More marginal, if not completely neglected, is the role of the atrial chamber within the clinical scenario of diastolic dysfunction and failure. Recently, however, several studies have demonstrated how the left atrium plays a primary role not only in modulating ventricular filling and function through the atrioventricular interaction mechanism but also in providing important prognostic clues for the risk stratification of patients with diastolic dysfunction.2,3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zile MR, Brutsaert D. New concepts in diastolic dysfunction and diastolic heart failure. Part I. Circulation 2002;105:1387–1393.

    Article  PubMed  Google Scholar 

  2. Tsang TSM, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of LV diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002;90:1284–1289.

    Article  PubMed  Google Scholar 

  3. Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume. J Am Coll Cardiol 2005;45:87–92.

    Article  PubMed  Google Scholar 

  4. McGrath MF, Kuroski de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab 2005;16:469–477.

    Article  PubMed  CAS  Google Scholar 

  5. Kasama S, Toyama T, Kumakura H, et al. Effects of intravenous atrial natriuretic peptide on cardiac sympathetic nerve activity in patients with decompensated congestive heart failure. J Nucl Med 2004;45:1108–1113.

    PubMed  CAS  Google Scholar 

  6. Arlt J, Jahn H, Kellner M, Strohle A, Yassouridis A, Wiedemann K. Modulation of sympathetic activity by corticotropin-releasing hormone and atrial natriuretic peptide. Neuropeptides 2003;37:362–368.

    Article  PubMed  CAS  Google Scholar 

  7. Angelis E, Tse MY, Pang SC. Interactions between atrial natriuretic peptide and the renin-angiotensin system during salt-sensitivity exhibited by the proANP gene-disrupted mouse. Mol Cell Biochem 2005;276:121–131.

    Article  PubMed  CAS  Google Scholar 

  8. Brandt RR, Wright RS, Redfield MM, Burnett JC Jr. Atrial natriuretic peptide in heart failure. J Am Coll Cardiol 1993;22:86–93.

    Google Scholar 

  9. Arbustini E, Pucci A, Grasso M, et al. Expression of atrial natriuretic peptide in ventricular myocardium of failing human hearts and its correlation with the severity of clinical and hemodynamic impairment. Am J Cardiol 1990;66:973–980.

    Article  PubMed  CAS  Google Scholar 

  10. De Bold AJ, Kuroski de Bold ML Determinants of natriuretic peptide production by the heart: basic and clinical implications. J Invest Med 2005;53:371–377.

    Article  Google Scholar 

  11. Vanderheyden M, Goethals M, Verstreken S, et al. Wall stress modulates brain natriuretic peptide production in pressure overload cardiomyopathy. J Am Coll Cardiol 2004;44:2349–2354.

    Article  PubMed  CAS  Google Scholar 

  12. Latour-Perez J, Coves-Orts FJ, Abad-Terrado C, Abraira V, Zamora J. Accuracy of B-type natriuretic peptide levels in the diagnosis of left ventricular dysfunction and heart failure: a systematic review. Eur J Heart Fail 2006;8:390–399.

    Article  PubMed  CAS  Google Scholar 

  13. Tabata T, Oki T, Yamada H, Abe M, Onose Y, Thomas JD. Relationship between left atrial appendage function and plasma concentration of atrial natriuretic peptide. Eur J Echocardiogr 2000;1:130–137.

    Article  PubMed  CAS  Google Scholar 

  14. Takeichi N, Fukuda N, Tamura Y, Oki T, Ito S. Relationship between atrial function and plasma level of atrial natriuretic peptide in patients with heart disease. Cardiology 1998;90:13–19.

    Article  PubMed  CAS  Google Scholar 

  15. Focaccio A, Volpe M, Ambrosio G, et al. Angiotensin II directly stimulates release of atrial natriuretic factor in isolated rabbit hearts. Circulation 1993;87:192–198.

    PubMed  CAS  Google Scholar 

  16. Fyhrquist F, Sirvio ML, Helin K, et al Endothelin antiserum decreases volume-stimulated and basal plasma concentration of atrial natriuretic peptide. Circulation 1993;90:1172–1176.

    Google Scholar 

  17. Longhurst JC. Cardiac receptors: their function in health and disease. Prog Cardiovasc Dis 1984;27:201–222.

    Article  PubMed  CAS  Google Scholar 

  18. Hainsworth R. Reflex from the heart. Physiol Rev 1991;71:617–658.

    PubMed  CAS  Google Scholar 

  19. Hakumaki MO. Seventy years of the Bainbridge reflex. Acta Physiol Scand 1987;130:177–185.

    PubMed  CAS  Google Scholar 

  20. Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 2001;280:H1814–H1820.

    PubMed  CAS  Google Scholar 

  21. Mouton R, Lochner JDV, Lochner A. New emphasis on atrial cardiology. S Afr Med J 1992;82:222–223.

    PubMed  CAS  Google Scholar 

  22. Rogg H, de Gasparo M, Graedel E, et al. Angiotensin II receptor subtypes in human atria and evidence for alterations in patients with cardiac dysfunction. Eur Heart J 1996;17:1112–1120.

    PubMed  CAS  Google Scholar 

  23. Braunwald E, Frahm CJ. Studies on Starling’s law of the heart. IV. Observations on the hemodynamic functions of the left atrium in man. Circulation 1961;24:633–642.

    Google Scholar 

  24. Castello R, Pearson AC, Lenzen P, Labovitz AJ. Evaluation of pulmonary venous flow by transesophageal echocardiography in subjects with a normal heart: comparison with transthoracic echocardiography. J Am Coll Cardiol 1991;18:65–71.

    PubMed  CAS  Google Scholar 

  25. Kono TK, Sabbah HN, Rosman H, Alam M, Stein PD, Goldstein S. Left atrial contribution to ventricular filling during the course of evolving heart failure. Circulation 1992;86:1317–1322.

    PubMed  CAS  Google Scholar 

  26. Payne RM, Stone HL, Engelken EJ. Atrial function during volume loading. J Appl Physiol 1971;31:326–331.

    PubMed  CAS  Google Scholar 

  27. Marino P, Prioli MA, Destro G, LoSchiavo I, Golia G, Zardini P. The left atrial volume curve can be assessed from pulmonary vein and mitral valve velocity tracings. Am Heart J 1994;127:886–898.

    Article  PubMed  CAS  Google Scholar 

  28. Marino P, Destro G, Barbieri E, Zardini P. Early left ventricular filling: an approach to its multifactorial nature using a combined hemodynamic-Doppler technique. Am Heart J 1991;122:132–141.

    Article  PubMed  CAS  Google Scholar 

  29. Choong CY, Herrman HC, Weyman AE, Fifer MA. Preload dependence of Doppler-derived indexes of left ventricular diastolic function in humans. J Am Coll Cardiol 1987;10:800–808.

    PubMed  CAS  Google Scholar 

  30. Bowman AW, Frihauf PA, Kovacs SJ. Time-varying effective mitral valve area: prediction and validation using cardiac MRI and Doppler echocardiography in normal subjects. Am J Physiol Heart Circ Physiol 2004;287:H1650–H1657.

    Article  PubMed  CAS  Google Scholar 

  31. Marino P, Little WC, Rossi A, et al. Can left ventricular diastolic stiffness be measured noninvasively? J Am Soc Echocardiogr 2002;15:935–943.

    Article  PubMed  Google Scholar 

  32. Hitch DC, Nolan SP. Descriptive analysis of instantaneous left atrial volume with special references to left atrial function. J Surg Res 1981;30:110–120.

    Article  PubMed  CAS  Google Scholar 

  33. Prioli A, Marino P, Lanzoni L, Zardini P. Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am J Cardiol 1998;82:756–761.

    Article  PubMed  CAS  Google Scholar 

  34. Barbier P, Solomon SB, Schiller NB, Glantz SA. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation 1999;100:427–436.

    PubMed  CAS  Google Scholar 

  35. Fujii K, Ozari M, Yamagishi T, et al. Effect of left ventricular contractile performance on passive left atrial filling: clinical study using radionuclide angiography. Clin Cardiol 1994;17:258–262.

    PubMed  CAS  Google Scholar 

  36. Smiseth OA, Thompson CR, Lo K, et al. The pulmonary venous systolic flow pulse — its origin and relationship to left atrial pressure. J Am Coll Cardiol 1999;34:802–809.

    Article  PubMed  CAS  Google Scholar 

  37. Ingwall JS. Energetics of the normal and failing human heart: focus on the creatine kinase reaction. Adv Org Biol 1998;4:117–141.

    Google Scholar 

  38. Solaro RJ, Wolska BM, Westfall M. Regulatory proteins and diastolic relaxation. In Lorell BH, Grossman W, eds. Diastolic Relaxation of the Heart. Boston: Kluwer Academic Publishers; 1988:43–54.

    Google Scholar 

  39. Marino P, Faggian G, Bertolini P, Mazzucco A, Little WC. Early mitral deceleration and atrial stiffness. Am J Physiol Heart Circ Physiol 2004;287:H1172–H1178.

    Article  PubMed  CAS  Google Scholar 

  40. Bowman AW, Kovacs SJ. Left atrial conduit volume is generated by deviation from the constant-volume state of the left heart: a combined MRI-echocardiographic study. Am J Physiol Heart Circ Physiol 2004;286:H2416–H224.

    Article  PubMed  CAS  Google Scholar 

  41. Stefanadis C, Dernellis J, Toutouzas P. Evaluation of the left atrial performance using acoustic quantification. Echocardiography 1998;82:756–761.

    Google Scholar 

  42. Altemose GT, Zipes DP, Weksler J, et al. Inhibition of the Na+/H+ exchanger delays the development of rapid pacing induced atrial contractile dysfunction. Circulation 2001;103:762–768.

    PubMed  CAS  Google Scholar 

  43. Sun H, Chartier D, Leblanc N, et al. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc Res 2001;49:751–761.

    Article  PubMed  CAS  Google Scholar 

  44. Yuel L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997;81:512–525.

    Google Scholar 

  45. Schotten U, Ausma J, Stellbrink C, et al. Cellular mechanism of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation 2001;103:691–698.

    PubMed  CAS  Google Scholar 

  46. Marzo KP, Frey MJ, Wilson JR, et al. Betaadrenergic receptor G-protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circ Res 1991;69:1546–1556.

    PubMed  CAS  Google Scholar 

  47. Nagata K, Iwase M, Sobue T, Yokota M. Differential effects of dobutamine and a phosphodiesterase inhibitor on early diastolic filling in patients with congestive heart failure. J Am Coll Cardiol 1995;25:295–304.

    Article  PubMed  CAS  Google Scholar 

  48. Parker JD, Landzberg JS, Bittl JA, Mirsky I, Colucci WS. Effects of beta-adrenergic stimulation with dobutamine on isovolumic relaxation in the normal and failing human left ventricle. Circulation 1991;84:1040–1048.

    PubMed  CAS  Google Scholar 

  49. Bristow MR, Ginsburg R, Umans V, et al. Beta1 and beta2 adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta1-receptor downregulation in HF. Circ Res 1986;59:297–309.

    PubMed  CAS  Google Scholar 

  50. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N Engl J Med 1982;307:205–211.

    PubMed  CAS  Google Scholar 

  51. Toutouzas K, Trikas A, Pitsavos C, et al. Echocardiographic features of left atrium in elite male athletes. Am J Cardiol 1996;78:1314–1317.

    Article  PubMed  CAS  Google Scholar 

  52. Appleton CP, Hatle LK. The natural history of left ventricular filling abnormalities: assessment by two-dimensional and Doppler echocardiography. Echocardiography 1992;9:437–457.

    Article  Google Scholar 

  53. Hoit BD, Walsh RA. Regional atrial distensibility. Am J Physiol Heart Circ Physiol 1992;262:H1356–H1360.

    CAS  Google Scholar 

  54. Tabata T, Oki T, Yamada H, et al. Role of the left atrial appendage clamping during cardiac surgery. Am J Cardiol 1998;81:327–332.

    Article  PubMed  CAS  Google Scholar 

  55. Marino P, Barbieri E, Prioli MA, Zardini P. Does prostaglandin E1 infusion affect the left ventricular filling pattern of end-stage dilated cardiomyopathy? A combined hemodynamic-echo Doppler study. J Card Pharm 1998;29:188–195.

    Article  Google Scholar 

  56. Briguori C, Betocchi S, Losi MA, et al. Noninvasive evaluation of left ventricular diastolic function in hypertrophic cardiomyopathy. Am J Cardiol 1998;81:180–187.

    Article  PubMed  CAS  Google Scholar 

  57. Triposkiadis F, Pitsavos C, Boudoulas H, Trikas A, Toutouzas P. Left atrial myopathy in idiopathic dilated cardiomyopathy. Am Heart J 1994;128:308–315.

    Article  PubMed  CAS  Google Scholar 

  58. Little WC, Ohno M, Kitzman DW, Thomas JD, Cheng CP. Determinants of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling. Circulation 1995;92:1933–1939.

    PubMed  CAS  Google Scholar 

  59. Rossi A, Zardini P, Marino P. Modulation of left atrial function by ventricular filling impairment. Heart Fail Rev 2000;5:325–331.

    Article  PubMed  CAS  Google Scholar 

  60. Atherton JJ, Moore TD, Thomson HL, Frenneaux MP. Restrictive left ventricular filling patterns are predictive of diastolic ventricular interaction in chronic heart failure. J Am Coll Cardiol 1998;31:413–418.

    Article  PubMed  CAS  Google Scholar 

  61. Dernellis JM, Stefanadis CI, Zacharoulis AA, Toutouzas PK. Left atrial mechanical adaptation to long-standing hemodynamic loads based on pressure-volume relations. Am J Cardiol 1998;81:1138–1143.

    Article  PubMed  CAS  Google Scholar 

  62. Matsuda Y, Toma Y, Moritani K, et al. Assessment of left atrial function in patients with hypertensive heart disease. Hypertension 1986;8:779–785.

    PubMed  CAS  Google Scholar 

  63. Suga H. Importance of atrial compliance in cardiac performance. Circ Res 1974;35:39–43.

    PubMed  CAS  Google Scholar 

  64. Ishida Y, Meisner JS, Tsujioka K, et al. Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 1986;74:187–196.

    PubMed  CAS  Google Scholar 

  65. Hees PE, Fleg JL, Dong SJ, Shapiro EP. MRI and echocardiographic assessment of the diastolic dysfunction of normal aging: altered LV pressure decline or load? Am J Physiol Heart Circ Physiol 2004;286:H782–H788.

    Article  PubMed  CAS  Google Scholar 

  66. Masugata H, Mizushige K, Kenda S, et al. Evaluation of left atrial wall elasticity using acoustic microscopy. Angiology 1999;50:583–590.

    PubMed  CAS  Google Scholar 

  67. Inaba Y, Yuda S, Kobayashi N, et al. Strain rate imaging for noninvasive functional quantification of the left atrium: comparative studies in controls and patients with atrial fibrillation. J Am Soc Echocardiogr 2005;18:729–736.

    Article  PubMed  Google Scholar 

  68. Di Salvo G, Caso P, Lo Piccolo R, et al. Atrial myocardial deformation properties predict maintenance of sinus rhythm after external cardioversion of recent-onset lone atrial fibrillation. Circulation 2005;112:387–395.

    Article  PubMed  Google Scholar 

  69. Sanders P, Morton JB, Davidson NC, et al. Electrical remodeling of the atria in congestive heart failure — electrophysiological and electroanatomic mapping in humans. Circulation 2003;108:1461–1468.

    Article  PubMed  Google Scholar 

  70. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 1997;96:3157–3163.

    PubMed  CAS  Google Scholar 

  71. Boldt A, Wetzel U, Lauschke J. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 2004;90:400–405.

    Article  PubMed  CAS  Google Scholar 

  72. Kono T, Sabbah HN, Rosman H, Alam M, Stein PD, Goldstein S. Left atrial contribution to ventricular filling during the course of evolving heart failure. Circulation 1992;86:1317–1322.

    PubMed  CAS  Google Scholar 

  73. Hoit BD, Shao Y, Gabel M, Walsh RA. Left atrial mechanical and biochemical adaption to pacing induced heart failure. Cardiovasc Res 1995;29:469–474.

    Article  PubMed  CAS  Google Scholar 

  74. Cooper G 4th. Cardiocyte cytoskeleton in hypertrophied myocardium. Heart Fail Rev 2000;5:187–201.

    Article  PubMed  Google Scholar 

  75. Kostin S, Klein S, Amon E, Scholz D, Schaper J. The cytoskeleton and related proteins in the human failure heart. Heart Fail Rev 2000;5:271–280.

    Article  PubMed  CAS  Google Scholar 

  76. Wu Y, Cazorla O, Labeit D. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 2000;32:2151–2161.

    Article  PubMed  CAS  Google Scholar 

  77. Gwathmey JK, Copelas L, McKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987;61:70–76.

    PubMed  CAS  Google Scholar 

  78. Granzier H, Irving T. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 1995;68:1027–1044.

    PubMed  CAS  Google Scholar 

  79. Borg TK, Caulfield JB. The collagen matrix of the heart. Fed Proc 1981;40:2037–2041.

    PubMed  CAS  Google Scholar 

  80. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 1989;13:1637–1652.

    PubMed  CAS  Google Scholar 

  81. Medugorac I. Characterization of intramuscular collagen in the mammalian left ventricle. Bas Res Cardiol 1982;77:589–598.

    Article  CAS  Google Scholar 

  82. Coker M, Thomas C, Clair M, et al. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol Heart Circ Physiol 274:H1516–H1523.

    Google Scholar 

  83. Cleutjens J. The role of matrix metalloproteinase in heart disease. Cardiovasc Res 1996;32:816–821.

    Article  PubMed  CAS  Google Scholar 

  84. Villari B, Campbell SE, Hess OM, et al. Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease. J Am Coll Cardiol 1993;22:1477–1484.

    PubMed  CAS  Google Scholar 

  85. Kato S, Spinale FG, Tanaka R, Johnson W, Cooper G 4th, Zile MR. Inhibition of collagen crosslinking: effects on fibrillar collagen and ventricular diastolic function. Am J Physiol Heart Circ Physiol 1995;269:H863–H868.

    CAS  Google Scholar 

  86. Weber KT, Sun Y, Tyagi SC, Cleutjiens JP. Collagen network of the myocardium: function, structural remodeling and regulatory mechanism. J Mol Cell Cardiol 1994;26:279–292.

    Article  PubMed  CAS  Google Scholar 

  87. Hoit BD, Shao Y, Gabel M, Pawloski-Dahm C, Walsh RA. Left atrial systolic and diastolic function after cessation of pacing in tachycardiainduced heart failure. Am J Physiol Heart Circ Physiol 1997;273:H921–H927.

    CAS  Google Scholar 

  88. Spinale FG, Coker ML, Krombach SR, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 1999;85:364–376.

    PubMed  CAS  Google Scholar 

  89. Nagatomo Y, Carabello BA, Coker ML, et al. Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 2000;278:H151–H161.

    PubMed  CAS  Google Scholar 

  90. Spinale FG, Coker ML, Bond BR, Zellner JL. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 2000;46:225–238.

    Article  PubMed  CAS  Google Scholar 

  91. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation 1995;92:835–841.

    PubMed  CAS  Google Scholar 

  92. Tsang TS, Barnes ME, Bailey KR, et al. Left atrial volume: important risk marker of incident atrial fibrillation in 1,655 older men and women. Mayo Clinic Proc 2001;76:467–475.

    CAS  Google Scholar 

  93. Modena MG, Muia N, Sgura FA, Molinari R, Castella A, Rossi R. Left atrial size is the major predictor of cardiac death and overall clinical outcome in patients with dilated cardiomyopathy: a long term follow-up study. Clin Cardiol 1997;20:553–560.

    Article  PubMed  CAS  Google Scholar 

  94. Rossi A, Cicoria M, Zanolla L, et al. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol 2002;40:1425–1430.

    Article  PubMed  Google Scholar 

  95. Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol 2003;42:1206–1207.

    Article  PubMed  Google Scholar 

  96. Tsang TSM, Barnes ME, et al. Prediction of risk for first age related cardiovascular events in an elderly population: the incremental value of echocardiography. J Am Coll Cardiol 2003;42:1199–1205.

    Article  PubMed  Google Scholar 

  97. Pepi M, Marenzi GC, Agostoni PG, et al. Sustained cardiac diastolic changes elicited by ultrafiltration in patients with moderate congestive heart failure: pathophysiological correlates. Br Heart J 1993;70:135–140.

    Article  PubMed  CAS  Google Scholar 

  98. Ohtani K, Yutani C, Nagata S, et al. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol 1995;25:1162–1169.

    Article  PubMed  CAS  Google Scholar 

  99. Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol 2003;42:1206–1207.

    Article  PubMed  Google Scholar 

  100. Leistad E, Christensen G, Ilebekk A. Significance of increased atrial pressure on stroke volume during atrial fibrillation in anaesthetized pigs. Acta Physiol Scand 1993;32:149–157.

    Google Scholar 

  101. Sanfilippo A, Abascal V, Sheehan M, et al. An atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 1990;82:792–797.

    PubMed  CAS  Google Scholar 

  102. Sun H, Gaspo R, Leblanc N, Nattel S. Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation 1998;98:719–727.

    PubMed  CAS  Google Scholar 

  103. Psaty Bm, Manolio TA, Kuller LH, et al. Incidence of and risk factors for atrial fibrillation in older adults. Circulation 1997;96:2455–2461.

    PubMed  CAS  Google Scholar 

  104. Shapiro EP, Effron MB, Lima S, Ouyang P, Siu CO, Bush D. Transient atrial dysfunction after cardioversion of chronic atrial fibrillation to sinus rhythm. Am J Cardiol 1988;62:1202–1207.

    Article  PubMed  CAS  Google Scholar 

  105. Olshansky B, Rosenfled LE, Warner AL, et al. The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study: approaches to control rate in atrial fibrillation. J Am Coll Cardiol 2004;43:1201–1208.

    Article  PubMed  Google Scholar 

  106. Ito Y, Arakawa M, Noda T, et al. Atrial reservoir and active transport function after cardioversion of chronic atrial fibrillation. Heart Vessels 1996;11:30–38.

    Article  PubMed  CAS  Google Scholar 

  107. Leistad E, Aksnes G, Verburg E, Christensen G. Atrial contractile dysfunction after short-term atrial fibrillation is reduced by verapamil but increased by BAY. Circulation 1996;93:1747–1754.

    PubMed  CAS  Google Scholar 

  108. Harjai KJ, Mobarek S, Cheirif J, Boulos LM, Murgo JP, Abi-Samra F. Clinical variables affecting recovery of left atrial mechanical function after cardioversion from atrial fibrillation. J Am Coll Cardiol 1997;30:481–486.

    Article  PubMed  CAS  Google Scholar 

  109. Louie EK, Liu D, Reynertson SI, Loeb HS, McKiernan TL, Scanlon PJ, Hariman RJ. Stunning of the left atrial atrium after spontaneous conversion of atrial fibrillation to sinus rhythm: demonstration by transesophageal Doppler techniques in a canine model. J Am Coll Cardiol 1998;32:2081–2086.

    Article  PubMed  CAS  Google Scholar 

  110. Urschel CW, Covell JW, Sonnenblick EH. Myocardial mechanics in aortic and mitral valvular regurgitation: the concept of instantaneous impedance as a determinant of the performance of the intact heart. J Clin Invest 1968;47:867–883.

    PubMed  CAS  Google Scholar 

  111. Nishimura RA, Tajik AJ. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J Am Coll Cardiol 1997;30:8–18.

    Article  PubMed  CAS  Google Scholar 

  112. Ren JF, Kotler MN, DePace NL, et al. Twodimensional echocardiographic determination of left atrial emptying volume: a noninvasive index in quantifying the degree of nonrheumatic mitral regurgitation. J Am Coll Cardiol 1983;2:729–736.

    Article  PubMed  CAS  Google Scholar 

  113. Kihara Y, Sasayama S, Miyazaki S, et al. Role of the left atrium in adaptation of the heart to chronic mitral regurgitation in conscious dogs. Circ Res 1988;62:543–553.

    PubMed  CAS  Google Scholar 

  114. Stefanadis C, Dernellis J, Toutouzas P. A clinical appraisal of left atrial function. Eur Heart J 2001;22:22–36.

    Article  PubMed  CAS  Google Scholar 

  115. Zile Mr, Tomita M, Nakano K, et al. Effects of left ventricular volume overload produced by mitral regurgitation on diastolic function. Am J Physiol Heart Circ Physiol 1991;261:H1471–H1480.

    CAS  Google Scholar 

  116. Corin WJ, Murakami T, Monrad ES, Hess OM, Krayenbuehl HP. Left ventricular passive diastolic properties in chronic mitral regurgitation. Circulation 1991;83:797–807.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Macciò, S., Marino, P. (2008). Role of the Left Atrium. In: Smiseth, O.A., Tendera, M. (eds) Diastolic Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-891-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-891-3_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-890-6

  • Online ISBN: 978-1-84628-891-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics