Skip to main content

The Role of Presenilins in Aβ-Induced Cell Death in Alzheimer’s Disease

  • Chapter
Book cover Abeta Peptide and Alzheimer’s Disease
  • 1129 Accesses

Abstract

Neuronal death in specific brain regions is a common feature of neurodegenerative disorders. Alzheimer’s disease (AD) is characterized by synaptic loss and a substantial amount of neuronal degeneration in regions involved in memory and learning processes (e.g., temporal, entorhinal and frontal cortex; hippocampus). The neuropathologic hallmarks of AD include the accumulation of amyloid plaques and hyperphosphorylated tau forming intracellular tangles. However, no correlation has been established between the number of plaques and the cognitive performance in AD patients [1], [2]. Instead, synaptic failure and intracellular production of amyloid beta (Aβ) appears to correlate well with the early cognitive dysfunction in AD patients [3], [4]. This has also been tested in a triple transgenic mouse model of AD where accumulation of intracellular Aβ1–42 corresponded with the early cognitive impairment [5]. Interestingly, no extracellular deposits of Aβ1–42 were detected in these mice at 4 months of age suggesting that A–1–42 accumulate intracellulary early in the disease process. Moreover, intracellular accumulation of Aβ1–42 was cleared with administration of anti-Aβ antibodies and rescued the retention deficits seen in young 3×Tg AD mice. Together, results from this and several other studies indicate that intracellular Aβ1–42-generation causes the primary toxicity to neurons in AD [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42:631–9.

    PubMed  CAS  Google Scholar 

  2. Samuel W, Terry RD, DeTeresa R, et al. Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol 1994; 51:772–8.

    PubMed  CAS  Google Scholar 

  3. Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572–80.

    PubMed  CAS  Google Scholar 

  4. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298:789–91.

    PubMed  CAS  Google Scholar 

  5. Billings LM, Oddo S, Green KN, et al. Intraneuronal Abeta causes the onset of early Alzheimer’s diseaserelated cognitive deficits in transgenic mice. Neuron 2005; 45:675–88.

    PubMed  CAS  Google Scholar 

  6. Tseng BP, Kitazawa M, LaFerla FM Amyloid β-peptide: The inside story. Curr Alzheimer Res 2004; 1:231–239.

    PubMed  CAS  Google Scholar 

  7. Zhang Z, Nadeau P, Song W, et al. Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2000; 2:463–5.

    PubMed  CAS  Google Scholar 

  8. Herreman A, Serneels L, Annaert W, et al. Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2000; 2:461–2.

    PubMed  CAS  Google Scholar 

  9. Chen Q, Schubert D. Presenilin-interacting proteins. Expert Rev Mol Med 2002; 2002:1–18.

    PubMed  Google Scholar 

  10. Popescu BO, Ankarcrona, M. Neurons bearing presenilins: weapons for defense or suicide. J Cell Mol Med 2000; 4:249–261.

    PubMed  CAS  Google Scholar 

  11. Oddo S, Caccamo A, Shepherd JD, et al. Tripletransgenic model of Alzheimer’s disease with plaques and tangles. Intracellular abeta and synaptic dysfunction. Neuron 2003; 39:409–21.

    PubMed  CAS  Google Scholar 

  12. Mattson MP, Keller JN, Begley JG. Evidence for synaptic apoptosis. Exp Neurol 1998; 153:35–48.

    PubMed  CAS  Google Scholar 

  13. Mattson MP, Partin J, Begley JG. Amyloid betapeptide induces apoptosis-related events in synapses and dendrites. Brain Res 1998; 807:167–76.

    PubMed  CAS  Google Scholar 

  14. Su JH, Anderson AJ, Cummings BJ, Cotman CW. Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 1994; 5:2529–33.

    PubMed  CAS  Google Scholar 

  15. Lassmann H, Bancher C, Breitschopf H, et al. Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 1995; 89:35–41.

    PubMed  CAS  Google Scholar 

  16. Smale G, Nichols NR, Brady DR, et al. Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 1995; 133:225–30.

    PubMed  CAS  Google Scholar 

  17. Dragunow M, Faull RL, Lawlor P, et al. In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 1995; 6:1053–7.

    PubMed  CAS  Google Scholar 

  18. Li WP, Chan WY, Lai HW, Yew DT. Terminal dUTP nick end labeling (TUNEL) positive cells in the different regions of the brain in normal aging and Alzheimer patients. J Mol Neurosci 1997; 8:75–82.

    PubMed  CAS  Google Scholar 

  19. Lucassen PJ, Chung WC, Kamphorst W, Swaab DF. DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer’s disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol 1997; 56:887–900.

    PubMed  CAS  Google Scholar 

  20. Sugaya K, Reeves M, McKinney M. Topographic associations between DNA fragmentation and Alzheimer’s disease neuropathology in the hippocampus. Neurochem Int 1997; 31:275–81.

    PubMed  CAS  Google Scholar 

  21. Kitamura Y, Shimohama S, Kamoshima W, et al. Alteration of proteins regulating apoptosis, Bcl–2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 1998; 780:260–9.

    PubMed  CAS  Google Scholar 

  22. Giannakopoulos P, Kovari E, Savioz A, et al. Differential distribution of presenilin-1, Bax, and Bcl-X(L) in Alzheimer’s disease and frontotemporal dementia. Acta Neuropathol (Berlin) 1999; 98:141–9.

    PubMed  CAS  Google Scholar 

  23. Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage, Bcl–2 expression, and brain pathology. J Neuropathol Exp Neurol 1997; 56:86–93.

    PubMed  CAS  Google Scholar 

  24. Drache B, Diehl GE, Beyreuther K, et al. Bcl-xl-specific antibody labels activated microglia associated with Alzheimer’s disease and other pathological states. J Neurosci Res 1997; 47:98–108.

    PubMed  CAS  Google Scholar 

  25. MacGibbon GA, Lawlor PA, Sirimanne ES, et al. Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res 1997; 750:223–34.

    PubMed  CAS  Google Scholar 

  26. Yang F, Sun X, Beech W, et al. Antibody to caspasecleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. Am J Pathol 1998; 152:379–89.

    PubMed  CAS  Google Scholar 

  27. Uetsuki T, Takemoto K, Nishimura I, et al. Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 1999; 19:6955–64.

    PubMed  CAS  Google Scholar 

  28. LeBlanc A, Liu H, Goodyer C, et al. Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J Biol Chem 1999; 274:23426–36.

    PubMed  CAS  Google Scholar 

  29. Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer’s disease. J Neurosci Res 1999; 57:315–23.

    PubMed  CAS  Google Scholar 

  30. Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 1999; 155:1459–66.

    PubMed  CAS  Google Scholar 

  31. Rohn TT, Head E, N esse WH, et al. Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 2001; 8:1006–16.

    PubMed  CAS  Google Scholar 

  32. Pompl PN, Yemul S, Xiang Z, et al. Caspase gene expression in the brain as a function of the clinical progression of Alzheimer’s disease. Arch Neurol 2003; 60:369–76.

    PubMed  Google Scholar 

  33. Raina AK, Hochman A, Zhu X, et al. Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol (Berlin) 2001; 101:305–10.

    PubMed  CAS  Google Scholar 

  34. Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 2003; 23:2557–63.

    PubMed  CAS  Google Scholar 

  35. Copani A, Sortino MA, Nicoletti F, Giuffrida SA. Alzheimer’s disease research enters a “new cycle”: how significant? Neurochem Res 2002; 27:173–6.

    PubMed  CAS  Google Scholar 

  36. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430:631–9.

    PubMed  CAS  Google Scholar 

  37. Lippa CF, Swearer JM, Kane KJ, et al. Familial Alzheimer’s disease: site of mutation influences clinical phenotype. Ann Neurol 2000; 48:376–9.

    Google Scholar 

  38. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269:973–7.

    PubMed  CAS  Google Scholar 

  39. Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995; 376:775–8.

    PubMed  CAS  Google Scholar 

  40. Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375:754–60.

    PubMed  CAS  Google Scholar 

  41. Cook DG, Sung JC, Golde TE, et al. Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci U S A 1996; 93:9223–8.

    PubMed  CAS  Google Scholar 

  42. Kovacs DM, Fausett HJ, Page KJ, et al. Alzheimerassociated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 1996; 2:224–9.

    PubMed  CAS  Google Scholar 

  43. Walter J, Capell A, Grunberg J, et al. The Alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol Med 1996; 2:673–91.

    PubMed  CAS  Google Scholar 

  44. De Strooper B, Beullens M, Contreras B, et al. Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer’s disease-associated presenilins. J Biol Chem 1997; 272:3590–8.

    PubMed  Google Scholar 

  45. Dewji NN, Singer SJ. Cell surface expression of the Alzheimer’s disease-related presenilin proteins. Proc Natl Acad Sci U S A 1997; 94:9926–31.

    PubMed  CAS  Google Scholar 

  46. Li J, Xu M, Zhou H, Ma J, Potter H. Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell 1997; 90:917–27.

    PubMed  CAS  Google Scholar 

  47. Pasternak SH, Bagshaw RD, Guiral M, et al. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J Biol Chem 2003; 278: 26687–94.

    PubMed  CAS  Google Scholar 

  48. Ankarcrona M, Hultenby K. Presenilin-1 is located in rat mitochondria. Biochem Biophys Res Commun 2002; 295:766–70.

    PubMed  CAS  Google Scholar 

  49. De Strooper B, Saftig P, Craessaerts K, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998; 391:387–90.

    PubMed  Google Scholar 

  50. Edbauer D, Winkler E, Regula JT, et al. Reconstitution of gamma-secretase activity. Nat Cell Biol 2003; 5:486–8.

    PubMed  CAS  Google Scholar 

  51. Capell A, Beher D, Prokop S, et al. Gamma-secretase complex assembly within the early secretory pathway. J Biol Chem 2005; 280:6471–8.

    PubMed  CAS  Google Scholar 

  52. Steiner H, Capell A, Pesold B, et al. Expression of Alzheimer’s disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J Biol Chem 1998; 273:32322–31.

    PubMed  CAS  Google Scholar 

  53. Van Gassen G, De Jonghe C, Pype S, et al. Alzheimer’s disease associated presenilin 1 interacts with HC5 and ZETA, subunits of the catalytic 20S proteasome. Neurobiol Dis 1999; 6:376–91.

    PubMed  Google Scholar 

  54. Bergman A, Hansson EM, Pursglove SE, et al. Pen-2 is sequestered in the endoplasmic reticulum and subjected to ubiquitylation and proteasome-mediated degradation in the absence of presenilin. J Biol Chem 2004; 279:16744–53. Epub 2004 Jan 14.

    PubMed  CAS  Google Scholar 

  55. Li YM, Xu M, Lai MT, et al. Photoactivated gammasecretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000; 405:689–94.

    PubMed  CAS  Google Scholar 

  56. Esler WP, Kimberly WT, Ostaszewski BL, et al. Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nat Cell Biol 2000; 2:428–34.

    PubMed  CAS  Google Scholar 

  57. Wolfe MS, Xia W, Ostaszewski BL, et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 1999; 398:513–7.

    PubMed  CAS  Google Scholar 

  58. Xia W, Wolfe MS. Intramembrane proteolysis by presenilin and presenilin-like proteases. J Cell Sci 2003; 116:2839–44.

    PubMed  CAS  Google Scholar 

  59. Selkoe D, Kopan R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 2003; 26: 565–97.

    PubMed  CAS  Google Scholar 

  60. Jarriault S, Brou C, Logeat F, et al. Signalling downstream of activated mammalian Notch. Nature 1995; 377:355–8.

    PubMed  CAS  Google Scholar 

  61. de la Pompa JL, Wakeham A, Correia KM, et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 1997; 124:1139–48.

    PubMed  Google Scholar 

  62. Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem 2001; 276:40288–92.

    PubMed  CAS  Google Scholar 

  63. Kimberly WT, Zheng JB, Town T, et al. Physiological regulation of the beta-amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J Neurosci 2005; 25:5533–43.

    PubMed  CAS  Google Scholar 

  64. Cao X, Sudhof TC. Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 2004; 279:24601–11.

    PubMed  CAS  Google Scholar 

  65. Leissring MA, Murphy MP, Mead TR, et al. A physiologic signaling role for the gamma-secretasederived intracellular fragment of APP. Proc Natl Acad Sci U S A 2002; 99:4697–702.

    PubMed  CAS  Google Scholar 

  66. Donoviel DB, Hadjantonakis AK, Ikeda M, et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 1999; 13:2801–10.

    PubMed  CAS  Google Scholar 

  67. Perez-Tur J, Froelich S, Prihar G, et al. A mutation in Alzheimer’s disease destroying a splice acceptor site in the presenilin-1 gene. Neuroreport 1995; 7:297–301.

    PubMed  CAS  Google Scholar 

  68. Duering M, Grimm MO, Grimm HS, et al. Mean age of onset in familial Alzheimer’s disease is determined by amyloid beta 42. Neurobiol Aging 2005; 26:785–8.

    PubMed  CAS  Google Scholar 

  69. Lleo A, Berezovska O, Herl L, et al. Nonsteroidal anti-inflammatory drugs lower Abeta42 and change presenilin 1 conformation. Nat Med 2004; 10:1065–6.

    PubMed  CAS  Google Scholar 

  70. Berezovska O, Lleo A, Herl LD, et al. Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci 2005; 25:3009–17.

    PubMed  CAS  Google Scholar 

  71. Nakaya Y, Yamane T, Shiraishi H, et al. Random mutagenesis of presenilin-1 identifies novel mutants exclusively generating long amyloid beta-peptides. J Biol Chem 2005; 280:19070–7.

    PubMed  CAS  Google Scholar 

  72. Walker ES, Martinez M, Brunkan AL, Goate A. Presenilin 2 familial Alzheimer’s disease mutations result in partial loss of function and dramatic changes in Abeta 42/40 ratios. J Neurochem 2005; 92:294–301.

    PubMed  CAS  Google Scholar 

  73. Esposito L, Gan L, Yu GQ, Essrich C, Mucke L. Intracellularly generated amyloid-beta peptide counteracts the antiapoptotic function of its precursor protein and primes proapoptotic pathways for activation by other insults in neuroblastoma cells. J Neurochem 2004; 91:1260–74.

    PubMed  CAS  Google Scholar 

  74. Wolozin B, Alexander P, Palacino J. Regulation of apoptosis by presenilin 1. Neurobiol Aging 1998; 19:S23–7.

    Google Scholar 

  75. Guo Q, Furukawa K, Sopher BL, et al. Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 1996; 8:379–83.

    PubMed  CAS  Google Scholar 

  76. Weihl CC, Ghadge GD, Kennedy SG, et al. Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB. J Neurosci 1999; 19:5360–9.

    PubMed  CAS  Google Scholar 

  77. Tanii H, Ankarcrona M, Flood F, et al. Alzheimer’s disease presenilin-1 exon 9 deletion and L250S mutations sensitize SH-SY5Y neuroblastoma cells to hyperosmotic stress-induced apoptosis. Neuroscience. 2000; 95:593–601.

    PubMed  CAS  Google Scholar 

  78. Popescu BO, Cedazo-Minguez A, Popescu LM, et al. Caspase cleavage of exon 9 deleted presenilin-1 is an early event in apoptosis induced by calcium ionophore A 23187 in SH-SY5Y neuroblastoma cells. J Neurosci Res 2001; 66:122–34.

    PubMed  CAS  Google Scholar 

  79. Czech C, Lesort M, Tremp G, et al. Characterization of human presenilin 1 transgenic rats: increased sensitivity to apoptosis in primary neuronal cultures. Neuroscience 1998; 87:325–36.

    PubMed  CAS  Google Scholar 

  80. Bursztajn S, DeSouza R, McPhie DL, et al. Overexpression in neurons of human presenilin-1 or a presenilin-1 familial Alzheimer’s disease mutant does not enhance apoptosis. J Neurosci 1998; 18:9790–9.

    PubMed  CAS  Google Scholar 

  81. Kovacs DM, Mancini R, Henderson J, et al. Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer’s disease mutations in human neuroglioma cells. J Neurochem 1999; 73:2278–85.

    PubMed  CAS  Google Scholar 

  82. Keller JN, Guo Q, Holtsberg FW, et al. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998; 18:4439–50.

    PubMed  CAS  Google Scholar 

  83. Chan SL, Culmsee C, Haughey N, et al. Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12. Neurobiol Dis 2002; 11:2–19.

    PubMed  CAS  Google Scholar 

  84. Cedazo-Minguez A, Popescu BO, Ankarcrona M, et al. The presenilin 1 deltaE9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations. J Biol Chem 2002; 277:36646–55.

    PubMed  CAS  Google Scholar 

  85. Wolozin B, Iwasaki K, Vito P, et al. Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 1996; 274:1710–3.

    PubMed  CAS  Google Scholar 

  86. Araki W, Yuasa K, Takeda S, et al. Overexpression of presenilin-2 enhances apoptotic death of cultured cortical neurons. Ann N Y Acad Sci 2000; 920:241–4.

    PubMed  CAS  Google Scholar 

  87. Mori M, Nakagami H, Morishita R, et al. N141I mutant presenilin-2 gene enhances neuronal cell death and decreases bcl–2 expression. Life Sci 2002; 70:2567–80.

    PubMed  CAS  Google Scholar 

  88. Guo Q, Sopher BL, Furukawa K, et al. Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997; 17:4212–22.

    PubMed  CAS  Google Scholar 

  89. Ito E, Oka K, Etcheberrigaray R, et al. Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer’s disease. Proc Natl Acad Sci U S A 1994; 91:534–8.

    PubMed  CAS  Google Scholar 

  90. Hirashima N, Etcheberrigaray R, Bergamaschi S, et al. Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease. Neurobiol Aging 1996; 17:549–55.

    PubMed  CAS  Google Scholar 

  91. Leissring MA, Akbari Y, Fanger CM, et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149:793–8.

    PubMed  CAS  Google Scholar 

  92. Guo Q, Fu W, Sopher BL, et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 1999; 5:101–6.

    PubMed  CAS  Google Scholar 

  93. Leissring MA, Paul BA, Parker I, et al. Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 1999; 72:1061–8.

    PubMed  CAS  Google Scholar 

  94. Stutzmann GE, Caccamo A, LaFerla FM, Parker I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci 2004; 24:508–13.

    PubMed  CAS  Google Scholar 

  95. Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 1994; 33:4550–61.

    PubMed  CAS  Google Scholar 

  96. Mattson MP, Cheng B, Davis D, et al. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12:376–89.

    PubMed  CAS  Google Scholar 

  97. Arispe N, Rojas E, Pollard HB. Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 1993; 90:567–71.

    PubMed  CAS  Google Scholar 

  98. Rhee SK, Quist AP, Lal R. Amyloid beta protein-(1–42) forms calcium-permeable, Zn2-sensitive channel. J Biol Chem 1998; 273:13379–82.

    PubMed  CAS  Google Scholar 

  99. Kagan BL, Hirakura Y, Azimov R, et al. The channel hypothesis of Alzheimer’s disease: current status.Peptides 2002; 23:1311–5.

    PubMed  CAS  Google Scholar 

  100. Bhatia R, Lin H, Lal R. Fresh and globular amyloid beta protein (1–42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. FASEB J 2000; 14:1233–43.

    PubMed  CAS  Google Scholar 

  101. Kayed R, Sokolov Y, Edmonds B, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004; 279:46363–6.

    PubMed  CAS  Google Scholar 

  102. Mattson MP, Cheng B, Culwell AR, et al. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993; 10:243–54.

    PubMed  CAS  Google Scholar 

  103. Furukawa K, Sopher BL, Rydel RE, et al. Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 1996; 67:1882–96.

    PubMed  CAS  Google Scholar 

  104. Guo Q, Robinson N, Mattson MP. Secreted betaamyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J Biol Chem 1998; 273:12341–51.

    PubMed  CAS  Google Scholar 

  105. Pickel VM, Clarke CL, Meyers MB. Ultrastructural localization of sorcin, a 22 kDa calcium binding protein, in the rat caudate-putamen nucleus: association with ryanodine receptors and intracellular calcium release. J Comp Neurol 1997; 386:625–34.

    PubMed  CAS  Google Scholar 

  106. Gracy KN, Clarke CL, Meyers MB, Pickel VM. N-methyl-D-aspartate receptor 1 in the caudateputamen nucleus: ultrastructural localization and co-expression with sorcin, a 22,000 mol. wt calcium binding protein. Neuroscience 1999; 90: 107–17.

    PubMed  CAS  Google Scholar 

  107. Buxbaum JD, Choi EK, Luo Y, et al. Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med 1998; 4:1177–81.

    PubMed  CAS  Google Scholar 

  108. Jo DG, Kim MJ, Choi YH, et al. Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J 2001; 15:589–91.

    PubMed  CAS  Google Scholar 

  109. Jo DG, Chang JW, Hong HS, et al. Contribution of presenilin/gamma-secretase to calsenilin-mediated apoptosis. Biochem Biophys Res Commun 2003; 305:62–6.

    PubMed  CAS  Google Scholar 

  110. Jo DG, Jang J, Kim BJ, Lundkvist J, Jung YK. Overexpression of calsenilin enhances gamma-secretase activity. Neurosci Lett 2005; 378:59–64.

    PubMed  CAS  Google Scholar 

  111. Lilliehook C, Bozdagi O, Yao J, et al. Altered Abeta formation and long-term potentiation in a calsenilin knock-out. J Neurosci 2003; 23:9097–106.

    PubMed  CAS  Google Scholar 

  112. Leissring MA, Yamasaki TR, Wasco W, et al. Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci U S A 2000; 97:8590–3.

    PubMed  CAS  Google Scholar 

  113. Maruyama K, Usami M, Kametani F, et al. Molecular interactions between presenilin and calpain: inhibition of m-calpain protease activity by presenilin-1, 2 and cleavage of presenilin-1 by m-, mu-calpain. Int J Mol Med 2000; 5:269–73.

    PubMed  CAS  Google Scholar 

  114. van de Craen M, de Jonghe C, van den Brande I, et al. Identification of caspases that cleave presenilin-1 and presenilin-2. Five presenilin-1 (PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett 1999; 445:149–54.

    PubMed  Google Scholar 

  115. Vito P, Ghayur T, D’Adamio L. Generation of antiapoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage. J Biol Chem 1997; 272:28315–20.

    PubMed  CAS  Google Scholar 

  116. Vezina J, Tschopp C, Andersen E, Muller K. Overexpression of a C-terminal fragment of presenilin 1 delays anti-Fas induced apoptosis in Jurkat cells. Neurosci Lett 1999; 263:65–8.

    PubMed  CAS  Google Scholar 

  117. Alves da Costa C, Paitel E, Mattson MP, et al. Wildtype and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci U S A 2002; 99:4043–8.

    PubMed  CAS  Google Scholar 

  118. Araki W, Yuasa K, Takeda S, et al. Pro-apoptotic effect of presenilin 2 (PS2) overexpression is associated with down-regulation of Bcl-2 in cultured neurons. J Neurochem 2001; 79:1161–8.

    PubMed  CAS  Google Scholar 

  119. Roperch JP, Alvaro V, Prieur S, et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med 1998; 4:835–8.

    PubMed  CAS  Google Scholar 

  120. Hong CS, Caromile L, Nomata Y, et al. Contrasting role of presenilin-1 and presenilin-2 in neuronal differentiation in vitro. J Neurosci 1999; 19:637–43.

    PubMed  CAS  Google Scholar 

  121. Farmery MR, Tjernberg LO, Pursglove SE, et al. Partial purification and characterization of gammasecretase from post-mortem human brain. J Biol Chem 2003; 278:24277–84.

    PubMed  CAS  Google Scholar 

  122. Brockhaus M, Grunberg J, Rohrig S, et al. Caspasemediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 1998; 9:1481–6.

    PubMed  CAS  Google Scholar 

  123. LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G. Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Abeta stabilization. J Clin Invest 1997; 100:310–20.

    PubMed  CAS  Google Scholar 

  124. Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004; 304:448–52.

    PubMed  CAS  Google Scholar 

  125. Crouch PJ, Blake R, Duce JA, et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci 2005; 25:672–9.

    PubMed  CAS  Google Scholar 

  126. Casley CS, Canevari L, Land JM, et al. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 2002; 80: 91–100.

    PubMed  CAS  Google Scholar 

  127. Canevari L, Clark JB, Bates TE. beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 1999; 457:131–4.

    PubMed  CAS  Google Scholar 

  128. Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol 2005; 86:161–71.

    PubMed  CAS  Google Scholar 

  129. Cardoso SM, Santos S, Swerdlow RH, Oliveira CR. Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 2001; 15: 1439–41.

    PubMed  CAS  Google Scholar 

  130. Rodrigues CM, Sola S, Brito MA, et al. Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem Biophys Res Commun 2001; 281:468–74.

    PubMed  CAS  Google Scholar 

  131. Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 2004; 24:565–75.

    PubMed  CAS  Google Scholar 

  132. Moreira PI, Santos MS, Moreno A, et al. Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res 2002; 69:257–67.

    PubMed  CAS  Google Scholar 

  133. Parks JK, Smith TS, Trimmer PA, et al. Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 2001; 76:1050–6.

    PubMed  CAS  Google Scholar 

  134. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 2002; 156:519–29.

    PubMed  CAS  Google Scholar 

  135. Kim HS, Lee JH, Lee JP, et al. Amyloid beta peptide induces cytochrome C release from isolated mitochondria. Neuroreport 2002; 13:1989–93.

    PubMed  CAS  Google Scholar 

  136. Yamaguchi H, Yamazaki T, Ishiguro K, et al. Ultrastructural localization of Alzheimer amyloid beta/A4 protein precursor in the cytoplasm of neurons and senile plaque-associated astrocytes. Acta Neuropathol (Berlin) 1992; 85:15–22.

    PubMed  CAS  Google Scholar 

  137. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003; 161:41–54.

    PubMed  CAS  Google Scholar 

  138. Hansson CA, Frykman S, Farmery MR, et al. Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 2004; 279:51654–60.

    PubMed  CAS  Google Scholar 

  139. Caspersen C, Wang N, Yao J, et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005; 19: 2040–2041.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ankarcrona, M. (2007). The Role of Presenilins in Aβ-Induced Cell Death in Alzheimer’s Disease. In: Barrow, C.J., Small, D.H. (eds) Abeta Peptide and Alzheimer’s Disease. Springer, London. https://doi.org/10.1007/978-1-84628-440-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-440-3_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-961-6

  • Online ISBN: 978-1-84628-440-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics