Skip to main content

Design of Precision Machines

  • Chapter
Machining Dynamics

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Precision machines are essential in modern industry and directly affect machining accuracy, repeatability, productivity and efficiency. Generally, the design of a precision machine mainly includes the design of its key elements such as mechanical structure, spindles and drive system, control and inspection systems, etc. There is a lot of literature available on the design of machine elements [1-5]; while it is difficult to cover in details on design of precision machine in one chapter. In this chapter, therefore, emphasis is placed on the mechanical and structural design of precision machines, relevant design methodology and tools driven by dynamics. Furthermore, the chapter focuses on the integrated approach for modelling and simulation of the machine and machining dynamics, and thus achieving an optimal design of the machine and its performance in the dynamic machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slocum, A. H. Precision Machine Design, Englewood Cliffs, Prentice Hall, NJ: 1992.

    Google Scholar 

  2. Maeda, O., Cao, Y. and Altintas, Y. Expert spindle design system. International Journal of Machine Tools and Manufacture, 2005, 45(4–5): 537–548.

    Article  Google Scholar 

  3. Park, C. H., Lee, E. S. and Lee, H. A review on research in ultra precision engineering at KIMM. International Journal of Machine Tools and Manufacture, 1999, 39: 1793–1805.

    Article  Google Scholar 

  4. Kim, H. S., Jeong, K. S. and Lee, D. G. Design and manufacture of a three–axis ultra–precision CNC grinding machine. Journal of Materials Processing Technology, 1997, 71: 258–26.

    Article  Google Scholar 

  5. Mekid, S. High precision linear slide. Part I: design and construction. International Journal of Machine Tools and Manufacture, 2000, 40(7): 1039–1050.

    Article  Google Scholar 

  6. Schellekens, P. and Rosielle, N. Design for precision: current status and trends, Annals of the CIRP, 1998, 47(2): 557–584.

    Article  Google Scholar 

  7. Rao, S. B. Metal cutting machine tool design – a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Manufacturing Science and Engineering, 1997, 119: 713–716.

    Google Scholar 

  8. Bryan, J. B. Design and construction of an ultraprecision 84 inch diamond turning machine. Precision Engineering, 1971, 1(1): 55–61.

    MathSciNet  Google Scholar 

  9. Stephenson, D. J., Veselovac, D., Manley, S. and Corbett, J. Ultra–precision grinding of hard steels, Precision Engineering, 2000, 15: 336–345.

    Google Scholar 

  10. Luo, X., Cheng, K., Webb, D. and Wardle, F. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components, Journal of Materials Processing Technology, 2005. 167(2–3): 515–528.

    Google Scholar 

  11. Ai, X., Wilmer, M. and Lawrentz, D. Development of friction drive transmission. Journal of Tribology, 2005, 127(4): 857–864.

    Article  Google Scholar 

  12. Deiab, I. M. and Elbestawi, M. A. Effect of workpiece/fixture dynamics on the machining process output. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1994, 218(11): 1541–1553.

    Article  Google Scholar 

  13. Ikawa, N., Donaldson, R. R., Kormanduri, R., König, W., Aachen, T. H., Mckeown, P. A., Moriwaki, T. and Stowers, I. F. Ultraprecision metal cutting–the past, the present and the future. Annals of the CIRP, 1991, 40(2): 587–594.

    Article  Google Scholar 

  14. Benaroya, H. Mechanical Vibration – Analysis, Uncertainties, and Control. Marcel Dekker, New York: 2004.

    MATH  Google Scholar 

  15. ANSYS Basic Analysis Procedure Guide, 2002, (ANSYS, Houston).

    Google Scholar 

  16. Lee, S. W., Mayor, R. and J. Ni, Dynamic analysis of a mesoscale machine tool. Transactions of the ASME: Journal of Manufacturing Science and Engineering, 2006, 128: 194–203.

    Article  Google Scholar 

  17. Baker, J. R. and Rouch, K. E. Use of finite element structural models in analyzing machine tool chatter. Finite Elements in Analysis and Design, 2002, 38(11): 1029–1046.

    Article  MATH  Google Scholar 

  18. Filiz, I. H., Akpolat, A. and Guzelbey, I. H. Deformations and pressure distribution on machine tool slideways. International Journal of Machine Tools and Manufacture, 1997, 37(3): 309–318.

    Article  Google Scholar 

  19. Mahdavinejad, R. Finite element analysis of machine and workpiece instability in turning. International Journal of Machine Tools and Manufacture, 2005, 45(7–8): 753–760.

    Article  Google Scholar 

  20. Chen, C. Y. and Cheng, C. C. Integrated structure and controller design of machine tools. Automation and Mechatronics, 2005, 2(2): 869–874.

    Google Scholar 

  21. Zeljkovic, M. and Gatalo, R. Experimental and computer aided analysis of high–speed spindle assembly behaviour. Annals of the CIRP, 1999, 48(1): 325–328.

    Article  Google Scholar 

  22. Bais, R. S., Gupta, A. K., Nakra, B. C. and Kundra, T. K. Studies in dynamic design of drilling machine using updated finite element models. Mechanism and Machine Theory, 2004, 39(12): 1307–1320.

    Article  MATH  Google Scholar 

  23. Raja, P. V., Pillai, P. R. and Radhakrishnan, P. Thermal analysis of spindle units under high speed machining. Journal of the Institution of Engineers, Mechanical Engineering Division, 2001, 81(4): 155–159.

    Google Scholar 

  24. Anagonye, A. U. and Stephenson, D. A. Modeling cutting temperatures for turning inserts with various tool geometries and materials. Transactions of the ASME: Journal of Manufacturing Science and Engineering, 2002, 124(3): 544–552.

    Article  Google Scholar 

  25. Madhavan, V. and Adibi–Sedeh, A. H. Understanding of finite element analysis results under the framework of Oxley's machining model. Machining Science and Technology, 2005, 9(3): 345–368.

    Article  Google Scholar 

  26. Jeon, S. Y. and Kim, K. H. A fluid film model for finite element analysis of structures with linear hydrostatic bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(3): 309–316.

    Article  Google Scholar 

  27. Ng, E. and Aspinwall, D. K. Modelling of hard part machining. Journal of Materials Processing Technology, 2002, 127(2): 222–229.

    Article  Google Scholar 

  28. Yan, J. and Strenkowski, J. S. A finite element analysis of orthogonal rubber cutting. Journal of Materials Processing Technology, 2006, 174(1–3): 102–108.

    Article  Google Scholar 

  29. Lee, W. B., Wu, H. Y., Cheung, C. F., To, S. and Chen, Y. P. Computer simulation of single–point diamond turning using finite element method. Journal of Materials Processing Technology, 2005, 167(2–3): 549–554.

    Google Scholar 

  30. Zeljkovic, M. and Gatalo, R. Experimental and computer aided analysis of high–speed spindle assembly behaviour. Annals of the CIRP, 1999, 48(1): 325–328.

    Article  Google Scholar 

  31. Ozel, T. and Altan, T. Process simulation using finite element method – prediction of cutting forces, tool stresses and temperatures in high–speed flat end milling. International Journal of Machine Tools and Manufacture, 2000, 40(5): 713–738.

    Article  Google Scholar 

  32. Weck, M., Fischer, S. and Vos, M. Fabrication of microcomponents using ultraprecision machine tools, Nanotechnology, 1997, 8: 145–148.

    Article  Google Scholar 

  33. http://www.masmicro.net. Accessed on 4th July 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Huo, D., Cheng, K., Wardle, F. (2009). Design of Precision Machines. In: Cheng, K. (eds) Machining Dynamics. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84628-368-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-368-0_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-367-3

  • Online ISBN: 978-1-84628-368-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics