Skip to main content

Intermetallic Formation and Growth

  • Chapter
A Guide to Lead-free Solders
  • 1282 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abtew, M. and Selvaduray, G., (2000) “Lead-free solders in Microelectronics”, Materials Science Engineering, Vol. 27, p. 95.

    Article  Google Scholar 

  2. Ahn. J. H. and Kwon, D., (2000) Mat. Sci. Eng. A285, p 172.

    Google Scholar 

  3. Alex C. K. So, A. C. K., Chan, Y. C. and Lai, J. K., (1997) “Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints”, IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol. 20, No.2, p. 161.

    Article  Google Scholar 

  4. Anthony, T. R. and Turnbull, D. (1966), Phys., Rev. 151, p. 495.

    Article  Google Scholar 

  5. Artaki, I., Finley, D. W., Jackson, A. M., Ray, U., Vianco, P. T., (1994) “Wave soldering with lead-free solders, in: Artaki, I., Jackson, A. M., Vianco, P. T., “Evaluation of lead-free joints in electronic assemblies”, J. Electron. Mater. 23(6).

    Google Scholar 

  6. ASM International, Electronic Materials Handbook, Vol. 1, Packaging, Materials Park, OH, p. 640, 1989

    Google Scholar 

  7. Blair, H. D., Pan, T., Nicholson, J. M., Cooper, R. P., Oh, S. and Farah, A. R., (1996) “Manufacturing Concerns of the Electronic Industry Regarding Intermetallic Compound Formation during the Soldering Stage”, Proceedings of 1996 IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 282–292.

    Google Scholar 

  8. Buehler Digest, (1988) vol. 25, no. 3, Lake Bluff, IL: Buegler, Ltd.

    Google Scholar 

  9. Bulwith, R., (2003) Soldering to Gold — A Practical Guide, available on-line.

    Google Scholar 

  10. Chen, Y. C., So, A. C. K. and Lai, J. K. L., (1998) “Growth Kinetic Studies of Cu-Sn Intermetallic Compound and Its Effect on Shear Strength of LCCC SMT Solder Joints”, Materials Science and Engineering, Vol. B55, pp. 5–13.

    Google Scholar 

  11. Choi, S., Bieler, T. R., Lucas, J. P. and Subramanian, K. N., (1999) “Characterization of the Growth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Solders and Their Composite Solders on Cu Substrate during Isothermal Long-Term Aging”, Journal of Electronic Materials, Vol. 28, No. 11, pp. 1209–1215.

    Google Scholar 

  12. DeHaven, P. W., (1985), Proc. of the Materials Research Society, p. 40.

    Google Scholar 

  13. Dooley G. J. and Peretti E. A., J.(1964), Chem. Eng. Data, Vol. 9, p. 90.

    Article  Google Scholar 

  14. Dunn, D. S., Sherry, T. F., Sherry, W. M. and Williams, C. J., (1985), Proc. of the Materials Research Society, p. 40.

    Google Scholar 

  15. Heinrich, F. J. and Newbury, D. E., (1986) Metals Handbook, Ninth Edition, Volume 10, Materials Characterization, American Society for Metals, Metals Park, OH, pp. 516–535.

    Google Scholar 

  16. Frear, D. R., Burchett, S. N., Morgan, H. S., Lau, J. H., (1994), The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York.

    Google Scholar 

  17. Glazer, J., (1995) “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, No.2, pp. 65–93.

    Google Scholar 

  18. Glazer, J., (1995) “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, No. 2, p. 65.

    Google Scholar 

  19. Hansen, M. and Anderko, K.,(1958), Constitution of Binary Alloys, McGraw-Hill, New York.

    Google Scholar 

  20. Hare. E. W., Corsin R. and Riemer E. K., (1985), ASM International Electronic Packaging Materials and Process Conf., pp. 109–115.

    Google Scholar 

  21. Heinrich, K. F. J; Newbury, D. E., Electron probe x-ray microanalysis. Low-energy electron diffraction, ASM Handbook. Vol. 10. Materials Characterization. ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA, 1986. pp. 516–535.

    Google Scholar 

  22. Hill, R., (1950), The solution of plastic-elastic problems. II, in: The Mathematical Theory of Plasticity, Clarendon, Oxford, London, pp. 97–127.

    Google Scholar 

  23. Hillert, M., (1975) in Lectures on the Theory of Phase Transformation. Ed. Aaronson, H. I. TMS-AIME, New York, pp. 1–50.

    Google Scholar 

  24. Hinch, S. W., (1988) Handbook of Surface Mount Technology, Longman, New York, p. 37.

    Google Scholar 

  25. Hua, F., Glazer, J., (1997) “Lead-free solders for electronic assembly, design and reliability of solders and solder interconnections, in: R. K. Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Liaw, W. L. Winterbottom (eds.)”, The Minerals, Metals and Materials Society, 1997, pp. 65–74.

    Google Scholar 

  26. Ishida, K. and Ohtani, H., (1999) Computational Materials Design, ed. Saito, T., Springer-Verlag, Heidelburg, Germany.

    Google Scholar 

  27. Ivey, D. G., (1998) “Microstructural Characterization of Au/Sn Solder for Packaging on Optoelectronic Application”, Micron, Vol. 29, No. 4, pp. 281–287.

    Article  Google Scholar 

  28. Jackson, G., Duriairaj, R., Ekere, N., Hendriksen, M., Hoo, N., Bailey, C., Lu, H., (August 2002) Detection and characterisation of intermetallic compounds in Pb-free solder joints using high-energy micro-focus X-ray diffraction, Experiment No. ME361, ESREF.

    Google Scholar 

  29. Johnson, K. L., (1970), J. Mech. Phys. Solids, 18, 115.

    Article  Google Scholar 

  30. Kabassis H., Rutter J. W., and Winegard W. C., (1986) Mater. Sci. Technol., Vol. 2, pp. 985–988.

    Google Scholar 

  31. Kamath, S., Garcia, A., (2001) Impact of Intermetallic Growth on the Mechanical Strength of Kattner, U. R., JOM, Vol. 49, p.14, 1997.

    Google Scholar 

  32. Kay, P. J. and MacKay, C. A., (1979) Transactions of the Institute of Metal Finishing, Vol. 57, p. 169.

    Google Scholar 

  33. King, R. B., (1987) Int. J. Solids Struct., 23, p. 1657.

    Article  MATH  Google Scholar 

  34. Klein-Wassink, R. J., (1989) Soldering in Electronics, Electrochemical Publication, Scotland.

    Google Scholar 

  35. Knorr, D. B., Felton, L. E., (1994) “Designing lead-free solder alloys for advanced electronics assembly, in: Proceedings of the 1994 Design for Manufacturability Conference”, ASME N.Y., New York

    Google Scholar 

  36. Kwoka, M. A., Foster, D., (1995) “A comparison of lead-free vs. eutectic solders, Circuits Assembly” 6(10)

    Google Scholar 

  37. Lawn, B. R., Evans, A. G., and Marshall, D. B., (1980) J. Am. Ceram. Soc., 63, p 574.

    Article  Google Scholar 

  38. Lee, B.-J., Hwang, N. M. and Lee, H. M., (1998) “Prediction of Interface Reaction Products between Cu and Various Solder Alloys by Thermodynamic Calculation”, Acta. Mater., Vol. 45, No. 5, pp. 1867–1874.

    Article  Google Scholar 

  39. Lee, H. M., Allen, S. M. and Grujicic, M., (1991) Metall. Trans. A, Vol. 22A, p. 2869.

    Google Scholar 

  40. Lee, N. C., Slattery, J., Sovinsky, J., Artaki, I., Vianco P, (1995) “A novel lead-free solder replacement”, Circuits Assembly 6(10) p 36–44.

    Google Scholar 

  41. Lucas, J. P., Guo, F., McDougall, J., Bieler, T. R., Subramanian, K. N. and Park, J. K., (1999) “Creep Deformation Behavior in Eutectic Sn-Ag Solder Joints Using a Novel Mapping Technique”, Journal of Electronic Materials, Vol. 28, No. 11, p. 1270.

    Google Scholar 

  42. Marsh, D. M., (1964) Proc. R. Soc., A 279 p. 420.

    Google Scholar 

  43. Marshall, J. L. and Walter, S. R.,(1987) Int. J. Hybrid. Microelectron., Vol.10, p.11.

    Google Scholar 

  44. Masslski, T. B., (1986) Binary Alloy Phase Diagrams, Vol 1, ASM International, Metals Park, OH, 1989.

    Google Scholar 

  45. McCormack, M., Jin, S., Kammlott, G. W., Chen, H. S., (1993) “New Pb-free Solder Alloy with Superior Mechanical Properties”, Appl. Phys. Lett., Vol. 63, No.1, pp.15–17.

    Article  Google Scholar 

  46. McCormack, M., Jin, S., (1993), “Progress in the design of new lead-free solder alloys”, JOM 45(7) pp 36–40.

    Google Scholar 

  47. Meagher, B., Schwarcz, D., Ohring, M., Journal of Materials Science, 1996, Springer, Journal of Materials Science 31 (1996) pp. 5479–5486

    Article  Google Scholar 

  48. Mei, Z. and Morris, J. W., (1992), J. Electron. Mater., Vol. 21, pp. 599–607.

    Google Scholar 

  49. Morris, J. W. Jr., Goldstein, J. L. and Mei, Z., (1993), JOM, Vol. 45, p. 25.

    Google Scholar 

  50. Nishizawa, T., (1992), Mater. Trans. JIM, Vol. 33, p. 713.

    Google Scholar 

  51. Ohnuma, I., Liu, X. J., Ohtani, H. and Ishida, K., (1999), “Thermodynamic Database for Phase Diagrams in Micro-Soldering Alloys”, Journal of Electronic Materials, Vol. 28, No. 11, pp. 1164–1171.

    Google Scholar 

  52. Ohtani, H. and Ishida, K., (1998), Thermochimica Acta, Vol. 214, p. 69.

    Article  Google Scholar 

  53. Oliver, W. C. and Pharr, G. M., (1992) J. Mater. Res., 7, p 1564.

    Google Scholar 

  54. Pan, T.-Y., Blair, H. D., Nicholson, J. M. and Oh, S.-W. (1997) “Intermetallic Compound Formation of Sn/Pb, Sn/Ag, and Sn Solders on Ni Substrate from the Molten Stage and Its Growth during Aging”, Advances in Electronic Packaging, Vol. 2, pp. 1347–1355.

    Google Scholar 

  55. Pb-Free Solders for Flip-Chip Interconnects, Journal of Materials., Vol 53, No. 6, pp.2832, 2001, Frear, D. R., Jang, J. W., Lin, J. K. and Zhang, C. Copyright The Minerals, Metals and Materials Society

    Google Scholar 

  56. Peng, W., Dunford, S., Viswanadham, P., and Quander, S. (2003) Microstructural and Performance Implications of Gold in Sn-Ag-Cu-Sb Interconnections, IEEE 2003 Electronic Components and Technology Conference, p 809.

    Google Scholar 

  57. Pinizzotto, R. F., Jacobs, E. G., Wu, Y., Sees, J. A., Foster, L. A. and Pouraghabagher, C., (1993), Int. Reliability Physics, Sympos.

    Google Scholar 

  58. Puttick, K. E., L. S. A. Smith, and L. E. Miller, J. (1977), Phys. D: Appl. Phys., 10 p. 617.

    Article  Google Scholar 

  59. Reed-Hill, R. E., (1973), Physical Metallurgy Principles, Litton Educational Publishing, Inc., Brooks-Cole, Monteray, CA, pp. 304–307.

    Google Scholar 

  60. Romig, A. D. Jr., Yost, F. G. Jr. and Hlava, P. F., (1964), Microbeam Analysis, (eds.) A. D. Romig and J. I. Goldstein, San Francisco Press, CA, p. 87.

    Google Scholar 

  61. Roming A. D., Chang Y. A., Stephens J. J., Marcotte V., Lea C., and Frear D. R., (1991), Solder Mechanics: A State of the Art Assessment, The Minerals, Metals and Materials Society.

    Google Scholar 

  62. Roubaud, P., Ng, G., Henshall, G., Bulwith, R., Herber, R., Prasad, S., Carson, F., Impact of Intermetallic Growth on the Mechanical Strength of Lead-Free BGA Assemblies, Proc. IPC SMEMA Council APEXSM 2001

    Google Scholar 

  63. Saunders, N. and Miodownik, A. P., (1998) CALPHAD, Pergamon, Lausanne, Switzerland.

    Google Scholar 

  64. Seelig, K., Sklarski, D., Johnson, L., and Sartell, J., (1987) Conf. Nepcon East, Boston, MA, Des Plaines, IL.

    Google Scholar 

  65. Seelig, K., (1995) “A study of lead-free solder alloys”, Circuits Assembly 6(10) (1995) p 46–48.

    Google Scholar 

  66. Seetharaman, S. and Sichen, D. (1994), Metall. Mater. Trans. Vol. B25B, p. 589.

    Google Scholar 

  67. Seyyedi, J. (1993), Solder. Surf. Mt. Technol., Vol.13, pp. 26–32.

    Article  Google Scholar 

  68. Seyyedi, J. (1993), Journal of Electronic Packaging, Vol. 115, p.305.

    Google Scholar 

  69. Shohji, I., Fujiwara, S., Kiyono, S. and Kobayashi, K. F., (1999), “Intermetallic Compound Layer Formation between Au and In-48Sn Solder”, Scripta Materialia, Vol. 40, No. 7, pp. 815–820. “Solder alloy data: mechanical properties of solders and soldered joints”, International Tin Research Institute, Uxbridge, England, p. 60.

    Article  Google Scholar 

  70. Tabor, D., (1948), Proc. R. Soc., 192A, p. 247.

    Google Scholar 

  71. Tanaka, T. and Hara, S., (1997) Materia Japan, Vol. 36, p. 47 (in Japanese).

    Google Scholar 

  72. Tanaka, T. and Iida, I., (1994) Steel Research Vol. 65, p. 32.

    Google Scholar 

  73. Thwaites, C. J., (1977), “Soft Soldering Handbook”, International Tin Research Institute, Publication No. 533.

    Google Scholar 

  74. Tojima, K., (1999), “Wetting Characteristics of Lead-free Solders, Senior Project Report”, Materials Engineering Department, San Jose State University.

    Google Scholar 

  75. Tomlinson, W. J. and Collier, I., (1987), The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder, J. Mater. Sci. 22 p. 1835–1839.

    Article  Google Scholar 

  76. Tu, K. N., (1996), “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, pp.217–223.

    Article  Google Scholar 

  77. Tu, P. L., Chan, Y. C. and Lai, J. K. L., (1997), “Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints”, IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol. 20, No. 1, p.87.

    Article  Google Scholar 

  78. Unsworth, D. A. and Mackay, C. A., (1973), “A Preliminary Report on Growth of Compound Layers on Various Metal Bases Plated with Tin and Its Alloys”, Transactions of the Institute of Metal Finishes, Vol. 51, pp. 85–90.

    Google Scholar 

  79. Van Vlack, L. H., (1970), Materials Science for Engineers, Addison-Wesley, Reading, MA.

    Google Scholar 

  80. Verhoeven, J. D, (1986), Metals Handbook, Ninth Edition, Vol. 10, Materials Characterization, American Society for Metals, Metals Park, OH, pp. 491–515.

    Google Scholar 

  81. Vianco, P. T., Hosking F. M. and Rejent J. A., (1992) Proc. Conf. Nepcon West, Anaheim, CA, Des Plaines, IL.

    Google Scholar 

  82. Vianco, P. T. and Frear, D. R.,(1993), JOM, Vol. 45, p. 14.

    Google Scholar 

  83. Vianco, P. T., Stephens, J. J. and Rejent, J. A., (1997), “Intermetallic Compound Layer Development During the Solid State Thermal Aging of 63Sn-37Pb Solder/Au-Pt-Pd Thick Film Couples”, IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, Vol. 20, No.4, p. 478.

    Article  Google Scholar 

  84. Wade, N., Akuzawa, T., Yamada, S., Sugiyama, D., Kim, I.-S. and Miyahara, K., (1990) “Effect of Microalloying on the Creep Strength and Microstructure of an Eutectic Sn-Pb Solder Alloy”, Journal of Electronic Materials, Vol. 28, No. 11, p. 1286.

    Google Scholar 

  85. Warwick, M. E. and Muckett, S. J., (1983) Circuit World, Vol. 9, No. 4, pp.5–11.

    Google Scholar 

  86. Wild, R. W., (1971), Properties of Some Melting Fusible Alloys, Technical Report, New York.

    Google Scholar 

  87. Yamagishi, Y., Ochiai, M., Ueda, H., Nakanishi, T., Kitazima, M., (1996), “Pb-free solder of Sn-58Bi improved with Ag”, Proceedings of the 9th International Microelectronics Conference, April 1996, Omiya, Japan, pp. 252–255.

    Google Scholar 

  88. Zakraysek, L., (1972), Weld. Res. Supp., Vol. 51, p. 536s.

    Google Scholar 

  89. Zhang, F., Li, M., Chum, C. C., Shao, Z. C., (2003) Effects of Substrate Metallization on Solder/Under-Bump Metallization Interfacial Reactions in Flip-Chip Packages during Multiple Reflow Cycles, Journal of Electronic Materials, Vol. 32, No. 3, 2003.

    Google Scholar 

  90. Zheng, Y, Hilman, C., McCluskey, P., (2002), Intermetallic Growth on PWBs Soldered with Sn3.8Ag0.7Cu, Proc. of 52nd Electronic Component Conf., pp 1226–1231, San Diego, 2002.

    Google Scholar 

  91. Zuruzi, A. S., Chiu, C.-H., Lahiri, S. K. and Chua, K. M., (1999), “Kinetics of Copper and High Pb/High Sn Bilayered Pb-Sn Solder Interactions”, Journal of Electronic Materials, Vol. 28, No. 11, pp. 1224–1230.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kwon, D. (2007). Intermetallic Formation and Growth. In: Engelmaier, W. (eds) A Guide to Lead-free Solders. Springer, London. https://doi.org/10.1007/978-1-84628-310-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-310-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-309-3

  • Online ISBN: 978-1-84628-310-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics