Skip to main content

Ion Channels as Novel Pancreatic Cancer Biomarkers and Targets

  • Chapter
  • First Online:
New Advances on Disease Biomarkers and Molecular Targets in Biomedicine

Abstract

Transient receptor potential (TRP) ion channels act as molecular sensors and transducers of diverse stimuli into cellular and physiological responses. Accumulating evidence has implicated the regulatory roles of TRP ion channels in various human diseases including malignancies. The requirement of the TRP melastatin-subfamily members, TRPM7 and TRPM8, in pancreatic development and cancer has been brought to light in recent discovery. Investigation of the mechanisms that mediate the functional roles of these TRP channels is expected to generate new insights into the pathogenesis of pancreatic neoplasia, and facilitate development of clinical biomarkers and therapeutic targets toward the goal of personalized therapy in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  2. Yee NS (2010) Zebrafish as a biological system for identifying and evaluating therapeutic targets and compounds. In: Han H, Grippo PJ (eds) Drug discovery in pancreatic cancer: models and techniques. Springer, New York, pp 95–112

    Chapter  Google Scholar 

  3. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

  4. Lehen’kyi V, Prevarskaya N (2011) Oncogenic TRP channels. Adv Exp Med Biol 1772:929–945

    Article  Google Scholar 

  5. Yee NS, Zhou W, Liang I-C (2011) Transient receptor potential ion channel Trpm7 mediates control of exocrine pancreatic growth via Mg2+-sensitive Socs3a signaling in development and cancer. Dis Model Mech 4:240–254

    Article  PubMed  CAS  Google Scholar 

  6. Yee NS, Zhou W, Lee M (2010) Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett 297:49–55

    Article  PubMed  CAS  Google Scholar 

  7. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    Article  PubMed  CAS  Google Scholar 

  8. Dadon D, Minke B (2010) Cellular functions of transient receptor potential channels. Int J Biochem Cell Biol 42:1430–1445

    Article  PubMed  CAS  Google Scholar 

  9. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639

    Article  PubMed  CAS  Google Scholar 

  10. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  PubMed  CAS  Google Scholar 

  11. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Article  PubMed  CAS  Google Scholar 

  12. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  PubMed  CAS  Google Scholar 

  13. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg2+ homeostasis in mammals. Nat Commun 1:109

    Article  PubMed  Google Scholar 

  14. Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the trpm7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci U S A 101:6009–6014

    Article  PubMed  CAS  Google Scholar 

  15. Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of trpm7/chak1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279:3708–3716

    Article  PubMed  CAS  Google Scholar 

  16. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY et al (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of trpm7/chak1. J Biol Chem 280:20793–20803

    Article  PubMed  CAS  Google Scholar 

  17. Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127:421–434

    Article  PubMed  CAS  Google Scholar 

  18. Aarts M, Lihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  PubMed  CAS  Google Scholar 

  19. Wykes RC, Lee M, Duffy SM, Yang W, Seward EP, Bradding P (2007) Functional transient receptor potential melastatin 7 channels are critical for human mast cell survival. J Immunol 179:4045–4052

    PubMed  CAS  Google Scholar 

  20. Abed E, Moreau R (2007) Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation. Cell Prolif 40:849–865

    Article  PubMed  CAS  Google Scholar 

  21. Abed E, Moreau R (2009) Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol 297:C360–C368

    Article  PubMed  CAS  Google Scholar 

  22. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–759

    Article  PubMed  CAS  Google Scholar 

  23. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301

    Article  PubMed  CAS  Google Scholar 

  24. Numata T, Shimizu T, Okada Y (2007) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 292:C460–C467

    Article  PubMed  CAS  Google Scholar 

  25. Wei C, Wang X, Chen M, Ouyang K, Song L-S, Chen H (2009) Calcium flickers steer cell migration. Nature 457:901–905

    Article  PubMed  CAS  Google Scholar 

  26. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM (2005) Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15:667–671

    Article  PubMed  CAS  Google Scholar 

  27. McNeill MS, Paulsen J, Bonde G, Burnight E, Hus MY, Cornell RA (2007) Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 127L:2020–2030

    Article  Google Scholar 

  28. Yee NS, Lorent K, Pack M (2005) Exocrine pancreas development in zebrafish. Dev Biol 284:84–101

    Article  PubMed  CAS  Google Scholar 

  29. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E et al (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharm Sci 95:403–419

    Article  CAS  Google Scholar 

  30. Jiang J, Li MH, Inoue K, Chu XP, Seeds J, Xiong ZG (2007) Transient receptor potential melastatin 7-like current in human head and neck carcinoma cells: role in cell proliferation. Cancer Res 67:10929–10938

    Article  PubMed  CAS  Google Scholar 

  31. Kim BJ, Park EJ, Lee JH, Jeon J-H, Kim SJ, So I (2008) Suppression of transient receptor potential melastatin 7 channel induces cell death in gastric cancer. Cancer Sci 99:2502–2509

    Article  PubMed  CAS  Google Scholar 

  32. Guilbert AGM, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid AH (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297:C493–C502

    Article  PubMed  CAS  Google Scholar 

  33. Chen J-P, Luan Y, You C-X, Chen X-H, Luo R-C, Li R (2010) TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca2+ influx. Cell Calcium 47:425–432

    Article  PubMed  CAS  Google Scholar 

  34. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  35. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  36. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    Article  PubMed  CAS  Google Scholar 

  37. Takishima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labelling of transient receptor potential melastatin 8 neurons. J Neurosci 27:14147–14157

    Article  Google Scholar 

  38. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    PubMed  CAS  Google Scholar 

  39. Mergler S, Strowski MZ, Kaiser S, Plath T, Giesecke Y, Neumann M, Hosokawa H, Kobayashi S, Langrehr J, Neuhaus P, Plockinger U, Wiedenmann B, Grotzinger C (2007) Transient receptor potential channel TRPM8 agonists stimulate calcium influx and neurotensin secretion in neuroendocrine tumor cells. Neuroendocrinology 85:81–92

    Article  PubMed  CAS  Google Scholar 

  40. Yamamura H, Ugawa S, Ueda T, Morita A, Shimada S (2008) TRPM8 activation suppresses cellular viability in human melanoma. Am J Physiol Cell Physiol 295:C296–C301

    Article  PubMed  CAS  Google Scholar 

  41. Li Q, Wang X, Yang Z, Wang B, Li S (2009) Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology 77:335–341

    Article  PubMed  CAS  Google Scholar 

  42. Louhivuori LM, Bart G, Larsson KP, Louhivuori V, Nasman J, Nordstrom T, Koivisto AP, Akerman KE (2009) Differentiation dependent expression of TRPA1 and TRPM8 channels in IMR-32 human neuroblastoma cells. J Cell Physiol 221:67–74

    Article  PubMed  CAS  Google Scholar 

  43. Wondergem R, Bartley JW (2009) Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci 16:90

    Article  PubMed  Google Scholar 

  44. Chodon D, Guilbert A, Dhennin-Duthille I, Gautier M, Telliez MS, Sevestre H, Ouadid-Ahidouch H (2010) Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer 10:212

    Article  PubMed  Google Scholar 

  45. Yee NS, Yusuff S, Pack M (2001) Zebrafish pdx1 morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30:137–140

    Article  PubMed  CAS  Google Scholar 

  46. Yee NS, Furth EE, Pack M (2003) Clinicopathologic and molecular features of pancreatic adenocarcinoma associated with Peutz-Jeghers Syndrome. Cancer Biol Ther 2:38–47

    PubMed  Google Scholar 

  47. Yee NS, Pack M (2005) Zebrafish as a model for pancreatic cancer research. Methods Mol Med 103:273–298

    PubMed  CAS  Google Scholar 

  48. Yee NS, Gong W, Huang Y, Lorent K, Maraia R, Pack M (2007) Mutation of RNA pol III subunit rpc2/polr3b leads to deficiency of subunit rpc11 and disrupts zebrafish digestive development. PLoS Biol 5:2484–2492

    Article  CAS  Google Scholar 

  49. Chun SG, Yee NS (2010) Werner’s syndrome as a hereditary risk factor for exocrine pancreatic cancer: potential role of WRN in pancreatic tumorigenesis and patient-tailored therapy. Cancer Biol Ther 10:430–437

    Article  PubMed  CAS  Google Scholar 

  50. Zhou W, Liang I-C, Yee NS (2011) Histone deacetylase 1 is required for pancreatic epithelial proliferation in development and cancer. Cancer Biol Ther 11:659–670

    Article  PubMed  CAS  Google Scholar 

  51. Chun SG, Zhou W, Yee NS (2009) Combined targeting of histone deacetylases and hedgehog signaling enhances cytotoxicity in pancreatic cancer. Cancer Biol Ther 8:1328–1339

    PubMed  CAS  Google Scholar 

  52. Yee NS, Zhou W, Chun SG, Liang I-C, Yee RK (2012) Targeting developmental regulators of zebrafish exocrine pancreas as a therapeutic approach in human pancreatic cancer. Biol Open 1(4):295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

N.S.Y. is supported by the Physician Scientist Stimulus Package from The Pennsylvania State University College of Medicine. The research work in the laboratory of N.S.Y. has been funded by Penn State Hershey Cancer Institute, The University of Iowa Carver College of Medicine, Holden Comprehensive Cancer Center at The University of Iowa, National Institutes of Health (NIDDK and NCI), American Cancer Society, and Fraternal Orders of Eagles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson S. Yee M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yee, N.S., Yee, R.K. (2013). Ion Channels as Novel Pancreatic Cancer Biomarkers and Targets. In: Lee, N., Cheng, C., Luk, J. (eds) New Advances on Disease Biomarkers and Molecular Targets in Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-456-2_5

Download citation

Publish with us

Policies and ethics